Assignment 1 Solutions

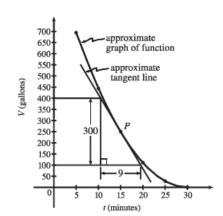
1. (a) Using P(15, 250), we construct the following table:

t	Q	$slope = m_{PQ}$
5	(5,694)	$\frac{694 - 250}{5 - 15} = -\frac{444}{10} = -44.4$
10	(10, 444)	$\frac{444 - 250}{10 - 15} = -\frac{194}{5} = -38.8$
20	(20, 111)	$\frac{111 - 250}{20 - 15} = -\frac{139}{5} = -27.8$
25	(25, 28)	$\frac{28 - 250}{25 - 15} = -\frac{222}{10} = -22.2$
30	(30, 0)	$\frac{0-250}{30-15} = -\frac{250}{15} = -16.\overline{6}$

(c) From the graph, we can estimate the slope of the tangent line at P to be $\frac{-300}{9} = -33.\overline{3}$.

(b) Using the values of t that correspond to the points closest to $P\ (t=10 \ {\rm and}\ t=20),$ we have

$$\frac{-38.8 + (-27.8)}{2} = -33.3$$



6. (a) $y = y(t) = 10t - 1.86t^2$. At t = 1, $y = 10(1) - 1.86(1)^2 = 8.14$. The average velocity between times 1 and 1 + h is

$$v_{\text{ave}} = \frac{y(1+h) - y(1)}{(1+h) - 1} = \frac{\left[10(1+h) - 1.86(1+h)^2\right] - 8.14}{h} = \frac{6.28h - 1.86h^2}{h} = 6.28 - 1.86h, \text{ if } h \neq 0.$$

(i)
$$[1, 2]$$
: $h = 1$, $v_{\text{ave}} = 4.42 \text{ m/s}$

(ii) [1, 1.5]:
$$h = 0.5$$
, $v_{\text{ave}} = 5.35 \text{ m/s}$

(iii) [1, 1.1]:
$$h = 0.1$$
, $v_{ave} = 6.094 \text{ m/s}$

(iv) [1, 1.01]:
$$h = 0.01$$
, $v_{ave} = 6.2614$ m/s

(v) [1, 1.001]:
$$h = 0.001$$
, $v_{ave} = 6.27814$ m/s

(b) The instantaneous velocity when t=1 (h approaches 0) is 6.28 m/s.

4. (a)
$$\lim_{x \to 0} f(x) = 3$$

(b)
$$\lim_{x \to 3^{-}} f(x) = 4$$

(c)
$$\lim_{x \to 3^+} f(x) = 2$$

- (d) $\lim_{x\to 3} f(x)$ does not exist because the limits in part (b) and part (c) are not equal.
- (e) f(3) = 3
- 8. (a) $\lim_{x\to 2} R(x) = -\infty$
- (b) $\lim_{x\to 5} R(x) = \infty$

(c) $\lim_{x \to -3^-} R(x) = -\infty$

- (d) $\lim_{x \to -2^+} R(x) = \infty$
- (e) The equations of the vertical asymptotes are x = -3, x = 2, and x = 5.

Assignment 1 Solutions

20. For $f(x) = x \ln(x + x^2)$:

x	f(x)
1	0.693147
0.5	-0.143841
0.1	-0.220727
0.05	-0.147347
0.01	-0.045952
0.005	-0.026467
0.001	-0.006907

It appears that $\lim_{x\to 0^+} x \ln(x+x^2) = 0$.

- 28. $\lim_{x\to 5^-} \frac{e^x}{(x-5)^3} = -\infty$ since the numerator is positive and the denominator approaches 0 from the negative side as $x\to 5^-$.
- 30. $\lim_{x\to\pi^-} \cot x = \lim_{x\to\pi^-} \frac{\cos x}{\sin x} = -\infty$ since the numerator is negative and the denominator approaches 0 through positive values as $x\to\pi^-$.