Solutions to Assignment 7

14.
$$\lim_{x \to \infty} \sqrt{\frac{12x^3 - 5x + 2}{1 + 4x^2 + 3x^3}} = \sqrt{\lim_{x \to \infty} \frac{12x^3 - 5x + 2}{1 + 4x^2 + 3x^3}}$$
 [Limit Law 11]
$$= \sqrt{\lim_{x \to \infty} \frac{12 - 5/x^2 + 2/x^3}{1/x^3 + 4/x + 3}}$$
 [divide by x^3]
$$= \sqrt{\frac{\lim_{x \to \infty} (12 - 5/x^2 + 2/x^3)}{\lim_{x \to \infty} (1/x^3 + 4/x + 3)}}$$
 [Limit Law 5]
$$= \sqrt{\frac{\lim_{x \to \infty} 12 - \lim_{x \to \infty} (5/x^2) + \lim_{x \to \infty} (2/x^3)}{\lim_{x \to \infty} (1/x^3) + \lim_{x \to \infty} (4/x) + \lim_{x \to \infty} 3}}$$
 [Limit Laws 1 and 2]
$$= \sqrt{\frac{12 - 5 \lim_{x \to \infty} (1/x^2) + 2 \lim_{x \to \infty} (1/x^3)}{\lim_{x \to \infty} (1/x^3) + 4 \lim_{x \to \infty} (1/x) + 3}}$$
 [Limit Laws 7 and 3]
$$= \sqrt{\frac{12 - 5(0) + 2(0)}{0 + 4(0) + 3}}$$
 [Theorem 5 of Section 2.5]
$$= \sqrt{\frac{12}{3}} = \sqrt{4} = 2$$

$$26. \lim_{x \to -\infty} \left(x + \sqrt{x^2 + 2x} \right) = \lim_{x \to -\infty} \left(x + \sqrt{x^2 + 2x} \right) \left[\frac{x - \sqrt{x^2 + 2x}}{x - \sqrt{x^2 + 2x}} \right] = \lim_{x \to -\infty} \frac{x^2 - \left(x^2 + 2x \right)}{x - \sqrt{x^2 + 2x}} \\
= \lim_{x \to -\infty} \frac{-2x}{x - \sqrt{x^2 + 2x}} = \lim_{x \to -\infty} \frac{-2}{1 + \sqrt{1 + 2/x}} = \frac{-2}{1 + \sqrt{1 + 2(0)}} = -1$$

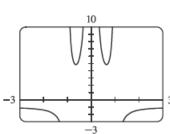
Note: In dividing numerator and denominator by x, we used the fact that for x < 0, $x = -\sqrt{x^2}$.

42.
$$\lim_{x \to \infty} \frac{1+x^4}{x^2 - x^4} = \lim_{x \to \infty} \frac{\frac{1+x^4}{x^4}}{\frac{x^2 - x^4}{x^4}} = \lim_{x \to \infty} \frac{\frac{1}{x^4} + 1}{\frac{1}{x^2} - 1} = \frac{\lim_{x \to \infty} \left(\frac{1}{x^4} + 1\right)}{\lim_{x \to \infty} \left(\frac{1}{x^2} - 1\right)} = \frac{\lim_{x \to \infty} \frac{1}{x^4} + \lim_{x \to \infty} 1}{\lim_{x \to \infty} \frac{1}{x^2} - \lim_{x \to \infty} 1}$$
$$= \frac{0+1}{0-1} = -1, \quad \text{so } y = -1 \text{ is a horizontal asymptote.}$$

$$y=f(x)=rac{1+x^4}{x^2-x^4}=rac{1+x^4}{x^2(1-x^2)}=rac{1+x^4}{x^2(1+x)(1-x)}.$$
 The denominator is

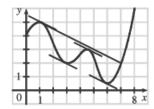
zero when x=0,-1, and 1, but the numerator is nonzero, so x=0, x=-1, and x=1 are vertical asymptotes. Notice that as $x\to 0$, the numerator and

denominator are both positive, so $\lim_{x\to 0} f(x) = \infty$. The graph confirms our work.



Solutions to Assignment 7

- 4. $f(x) = \cos 2x$, $[\pi/8, 7\pi/8]$. f, being the composite of the cosine function and the polynomial 2x, is continuous and differentiable on \mathbb{R} , so it is continuous on $[\pi/8, 7\pi/8]$ and differentiable on $(\pi/8, 7\pi/8)$. Also, $f(\frac{\pi}{8}) = \frac{1}{2}\sqrt{2} = f(\frac{7\pi}{8})$. $f'(c) = 0 \Leftrightarrow -2\sin 2c = 0 \Leftrightarrow \sin 2c = 0 \Leftrightarrow 2c = \pi n \Leftrightarrow c = \frac{\pi}{2}n$. If n = 1, then $c = \frac{\pi}{2}$, which is in the open interval $(\pi/8, 7\pi/8)$, so $c = \frac{\pi}{2}$ satisfies the conclusion of Rolle's Theorem.
- 8. $\frac{f(7) f(1)}{7 1} = \frac{2 5}{6} = -\frac{1}{2}$. The values of c which satisfy $f'(c) = -\frac{1}{2}$ seem to be about c = 1.1, 2.8, 4.6, and 5.8.



- **14.** $f(x) = \frac{x}{x+2}$, [1, 4]. f is continuous on [1, 4] and differentiable on (1, 4). $f'(c) = \frac{f(b) f(a)}{b-a} \Leftrightarrow \frac{2}{(c+2)^2} = \frac{\frac{2}{3} \frac{1}{3}}{4-1} \Leftrightarrow (c+2)^2 = 18 \Leftrightarrow c = -2 \pm 3\sqrt{2}$. $-2 + 3\sqrt{2} \approx 2.24$ is in (1, 4).
- 24. If $3 \le f'(x) \le 5$ for all x, then by the Mean Value Theorem, $f(8) f(2) = f'(c) \cdot (8-2)$ for some c in [2,8]. (f is differentiable for all x, so, in particular, f is differentiable on (2,8) and continuous on [2,8]. Thus, the hypotheses of the Mean Value Theorem are satisfied.) Since f(8) f(2) = 6f'(c) and $3 \le f'(c) \le 5$, it follows that $6 \cdot 3 \le 6f'(c) \le 6 \cdot 5 \implies 18 \le f(8) f(2) \le 30$.
- 10. (a) $f(x) = 4x^3 + 3x^2 6x + 1 \implies f'(x) = 12x^2 + 6x 6 = 6(2x^2 + x 1) = 6(2x 1)(x + 1)$. Thus, $f'(x) > 0 \implies x < -1 \text{ or } x > \frac{1}{2} \text{ and } f'(x) < 0 \implies -1 < x < \frac{1}{2}$. So f is increasing on $(-\infty, -1)$ and $(\frac{1}{2}, \infty)$ and f is decreasing on $(-1, \frac{1}{2})$.
 - (b) f changes from increasing to decreasing at x = -1 and from decreasing to increasing at $x = \frac{1}{2}$. Thus, f(-1) = 6 is a local maximum value and $f(\frac{1}{2}) = -\frac{3}{4}$ is a local minimum value.
 - (c) f''(x) = 24x + 6 = 6(4x + 1). $f''(x) > 0 \Leftrightarrow x > -\frac{1}{4}$ and $f''(x) < 0 \Leftrightarrow x < -\frac{1}{4}$. Thus, f is concave upward on $\left(-\frac{1}{4}, \infty\right)$ and concave downward on $\left(-\infty, -\frac{1}{4}\right)$. There is an inflection point at $\left(-\frac{1}{4}, f\left(-\frac{1}{4}\right)\right) = \left(-\frac{1}{4}, \frac{21}{8}\right)$.

Solutions to Assignment 7

- 22. (a) $f(x) = x^4(x-1)^3 \implies f'(x) = x^4 \cdot 3(x-1)^2 + (x-1)^3 \cdot 4x^3 = x^3(x-1)^2 \left[3x + 4(x-1)\right] = x^3(x-1)^2 (7x-4)$ The critical numbers are $0, 1, \text{ and } \frac{4}{7}$.
 - (b) $f''(x) = 3x^2(x-1)^2(7x-4) + x^3 \cdot 2(x-1)(7x-4) + x^3(x-1)^2 \cdot 7$ = $x^2(x-1)[3(x-1)(7x-4) + 2x(7x-4) + 7x(x-1)]$

Now f''(0) = f''(1) = 0, so the Second Derivative Test gives no information for x = 0 or x = 1.

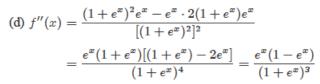
 $f''\left(\frac{4}{7}\right) = \left(\frac{4}{7}\right)^2\left(\frac{4}{7}-1\right)\left[0+0+7\left(\frac{4}{7}\right)\left(\frac{4}{7}-1\right)\right] = \left(\frac{4}{7}\right)^2\left(-\frac{3}{7}\right)(4)\left(-\frac{3}{7}\right) > 0$, so there is a local minimum at $x = \frac{4}{7}$.

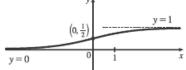
- (c) f' is positive on $(-\infty, 0)$, negative on $(0, \frac{4}{7})$, positive on $(\frac{4}{7}, 1)$, and positive on $(1, \infty)$. So f has a local maximum at x = 0, a local minimum at $x = \frac{4}{7}$, and no local maximum or minimum at x = 1.
- 50. $f(x) = \frac{e^x}{1 + e^x}$ has domain \mathbb{R}
 - (a) $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{e^x/e^x}{(1+e^x)/e^x} = \lim_{x \to \infty} \frac{1}{e^{-x}+1} = \frac{1}{0+1} = 1$, so y = 1 is a HA.

 $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{e^x}{1 + e^x} = \frac{0}{1 + 0} = 0$, so y = 0 is a HA. No VA.

- (b) $f'(x) = \frac{(1+e^x)e^x e^x \cdot e^x}{(1+e^x)^2} = \frac{e^x}{(1+e^x)^2} > 0$ for all x. Thus, f is increasing on \mathbb{R} .
- (c) There is no local maximum or minimum.

(e)





 $f''(x) > 0 \Leftrightarrow 1 - e^x > 0 \Leftrightarrow x < 0$, so f is CU on $(-\infty, 0)$ and CD on $(0, \infty)$.

There is an inflection point at $(0, \frac{1}{2})$.

- 2. (a) $\lim_{x\to a} [f(x)p(x)]$ is an indeterminate form of type $0\cdot\infty$.
 - (b) When x is near a, p(x) is large and h(x) is near 1, so h(x)p(x) is large. Thus, $\lim_{x\to a} [h(x)p(x)] = \infty$.
 - (c) When x is near a, p(x) and q(x) are both large, so p(x)q(x) is large. Thus, $\lim_{x\to a} [p(x)q(x)] = \infty$.
- 10. This limit has the form $\frac{0}{0}$. $\lim_{x\to 0} \frac{\sin 4x}{\tan 5x} \stackrel{\text{H}}{=} \lim_{x\to 0} \frac{4\cos 4x}{5\sec^2(5x)} = \frac{4(1)}{5(1)^2} = \frac{4}{5}$
- 18. This limit has the form $\frac{\infty}{\infty}$. $\lim_{x \to \infty} \frac{\ln \ln x}{x} = \lim_{x \to \infty} \frac{\frac{1}{\ln x} \cdot \frac{1}{x}}{1} = \lim_{x \to \infty} \frac{1}{x \ln x} = 0$