Math 1000 Second Midterm Exam Solutions

Wednesday, August 5, 2009

- 1. (a) State the formula for L(x), the linearization of the function f(x) at a. [2] Solution. L(x) = f(a) + f'(a)(x-a) is the linearization of the function f(x) at a.
 - (b) Find the linear approximation of the function $f(x) = \sin(x)$ at 0. [2] Solution. $\sin(x) \approx \sin(0) + \cos(0)(x - 0) = 0 + 1 \cdot x = x$ at 0.
 - (c) Given that $e^{x-1} \approx x$ for values of x near 1, give an approximation of $e^{0.001}$. [2] Solution. Given that $e^{x-1} \approx x$, and that $e^{0.001} = e^{x-1}$ when x = 0.001, then $e^{0.001} \approx 1.001$.
- 2. Find the critical numbers of $f(x) = \sqrt{x} \frac{1}{2}x. \tag{5}$

Solution. The critical numbers of f are the values of c in the domain of f such that f'(c)=0 or such that f'(c) is undefined. We find the derivative to be $f'(x)=\frac{1}{2\sqrt{x}}-\frac{1}{2}$. Let f'(x)=0, that is $0=\frac{1}{2\sqrt{x}}-\frac{1}{2}$ which implies $\sqrt{x}=1$ and thus x=1. Now we consider where the derivative is not defined. The domain is of f $x \ge 0$, but the derivative is only defined for x>0, so 0 is also a critical number. That is 0 and 1 are the critical numbers of f.

3. Apply the Closed Interval Method to find the absolute maximum and minimum values [5] of $f(x) = 3x^2 - 12x + 5$ on the interval [0, 3].

Solution. First we find that the derivative is f'(x) = 6x - 12. If we let the derivative be 0 then we find x = 2. Thus the closed interval method requires we compare the values of f(0), f(2) and f(3). We find that f(0) = 5 is maximum value of f and that f(2) = -7 is the minimum value. For completeness we note f(3) = -4.

4. Verify that the function $f(x) = x^3 + x - 1$ satisfies the hypotheses of the Mean Value [5] Theorem on the interval [0, 2]. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

Solution. The function f is a polynomial and thus is continuous and differentiable everywhere, thus it satisfies the hypotheses of the MVT. We find f(b) = f(2) = 9 and f(a) = f(0) = -1. Thus we are looking for c such that

$$f'(c) = \frac{9 - (-1)}{2 - 0} = 5.$$

That is, we want to solve $3x^2 + 1 = 5$ for x, the solutions of which are $x = \pm \frac{2}{\sqrt{3}}$. However, only $x = \frac{2}{\sqrt{3}}$ is in the given interval.

[2]

- 5. Consider $f(x) = \sin x + \cos x$, for $0 \le x \le 2\pi$.
- (a)+(b) Find the intervals on which f is increasing or decreasing.

Solution. We find $f'(x) = \cos x - \sin x$. We let $0 = \cos x - \sin x$ and find that $x = \frac{\pi}{4}, \frac{5\pi}{4}$. Moreover, we find that f is increasing on $[0, \frac{\pi}{4}) \cup (\frac{5\pi}{4}, 2\pi]$ and decreasing on $(\frac{\pi}{4}, \frac{5\pi}{4})$. By the first derivative test, a local maximum occurs at $\frac{\pi}{4}$ and a local minimum occurs at $\frac{5\pi}{4}$.

(c) Find the intervals of concavity and the inflection points. [2] Solution. The second derivative is $f''(x) = -\sin x - \cos x$. The second derivative is 0 when $x = \frac{3\pi}{4}, \frac{7\pi}{4}$. The function is concave down on $[0, \frac{3\pi}{4}) \cup (\frac{7\pi}{4}, 2\pi]$ and concave up on $(\frac{3\pi}{4}, \frac{7\pi}{4})$. Both $\frac{3\pi}{4}$ and $\frac{7\pi}{4}$ are inflection points.

6. Calculate

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}}.$$
 [5]

Solution.

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}} (\text{type } \frac{\infty}{\infty}) \stackrel{L}{=} \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{3x^{\frac{2}{3}}}} = \lim_{x \to \infty} \frac{3}{\sqrt[3]{x}} = 0.$$

7. Calculate

$$\lim_{x \to \infty} \left(\frac{2x-3}{2x+5}\right)^{(2x+1)}.$$
 [5]

Solution. This limit is of the form 1^{∞} , which we will evaluate using ln.

$$\lim_{x \to \infty} \left(\frac{2x - 3}{2x + 5} \right)^{(2x+1)} = e^{\lim_{x \to \infty} (2x+1)(\ln(2x-3) - \ln(2x+5))}.$$

The limit in the exponent is of the form $\infty \cdot 0$, which by rewriting and using L'Hospitâl's Rule we get

$$\lim_{x \to \infty} (2x+1)(\ln(2x-3) - \ln(2x+5)) = \lim_{x \to \infty} \frac{\ln(2x-3) - \ln(2x+5)}{\frac{1}{2x+1}}$$

$$\stackrel{L}{=} \lim_{x \to \infty} \frac{\frac{2}{2x-3} - \frac{2}{2x+5}}{\frac{-1 \cdot 2}{(2x+1)^2}}$$

$$= \lim_{x \to \infty} \frac{-[(2x+5) - (2x-3)](2x+1)^2}{(2x+5)(2x-3)}$$

$$= \lim_{x \to \infty} \frac{-8(2+\frac{1}{x})^2}{(2+\frac{5}{x})(2-\frac{3}{x})}$$

$$= \frac{-8 \cdot 2 \cdot 2}{2 \cdot 2}$$

$$= -8.$$

Therefore,

$$\lim_{x \to \infty} \left(\frac{2x - 3}{2x + 5} \right)^{(2x+1)} = e^{-8}.$$

8. Verify, given $f(x) = e^{-x}(x^2 - x)$, that

$$f'(x) = -e^{-x}(x^2 - 3x + 1),$$

and that [2]

$$f''(x) = e^{-x}(x^2 - 5x + 4).$$

Solution.

$$f'(x) = -e^{-x}(x^2 - x) + e^{-x}(2x - 1) = -e^{-x}(x^2 - 3x + 1),$$

and

$$f''(x) = e^{-x}(x^2 - 3x + 1) - e^{-x}(2x - 3) = e^{-x}(x^2 - 5x + 4).$$

- 9. Consider the curve given by the function $f(x) = e^{-x}(x^2 x)$.
 - (a) What is the domain of the function f? [2] Solution. The functions e^{-x} and $x^2 x$ both have domain the entire real line, so their product also has the domain \mathbb{R} .
 - (b) Does the function have any x-intercepts or y-intercepts? If so, what are they? [2] Solution. Solving $0 = e^{-x}(x^2 x)$ gives x = 0, 1 as x-intercepts. The y-intercept is f(0) = 0.
 - (c) Is the function even? Is the function odd? [2] Solution. The function is neither even nor odd.
 - (d) Does the function have any vertical asymptotes? If so, what are they? Does the function have any horizontal asymptotes? If so, what are they? [2] Solution. The function has no vertical asymptotes as it is continuous on R. As for horizontal asymptotes,

$$\lim_{x \to \infty} e^{-x}(x^2 - x) = 0,$$

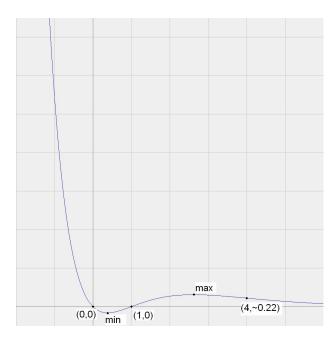
and

$$\lim_{x \to -\infty} e^{-x}(x^2 - x) = \infty,$$

so there is one horizontal asymptote, y = 0.

- (e) Find the critical numbers of f. Where is the function increasing? Where is the function decreasing? [2] Solution. We have $f'(x) = -e^{-x}(x^2 3x + 1)$. The critical numbers of f are the values of f for which $f'(x) = -e^{-x}(x^2 3x + 1)$. We find the function is decreasing on $f(x) = -e^{-x}(x^2 3x + 1)$ and increasing on $f(x) = -e^{-x}(x^2 3x + 1)$.
- (f) Find all local maximum and minimum values of f. Use either the first or second derivative test to justify your answer. [2] Solution. By the first derivative test, we see from the previous part that there is a local minimum at $\frac{3-\sqrt{5}}{2}$ and that there is a local maximum at $\frac{3+\sqrt{5}}{2}$.

- (g) Determine where the curve is concave up and where the curve is concave down. Does the curve have any inflection points? If so, what are they? [2] Solution. The second derivative is $f''(x) = e^{-x}(x^2 5x + 4)$, which takes the value 0 when x = 1, 4. The function f is concave up on $(\infty, 1) \cup (4, \infty)$ and concave down on (1, 4). There are inflection points at both x = 1 and x = 4.
- (h) Sketch the graph of the function. Plot all intercepts, asymptotes, local maxima and minima, and inflection points.[2] Solution.



Total: $\overline{57}$