Due by 1559 AST Friday, April 1, 2011 — Show your work

CSCI/MATH 2113 Final Exam: Tuesday 12 April 2011 — 14:00 — Dalplex

- 1. Let $g(x) = (1 + x^2 + x^4)(1 + x + x^2)^2$ be the generating function for a_n . Find a_n for $n \ge 0$.
- 2. Build a generating function for the number of positive integer solutions to $n_1 + n_2 + n_3 + n_4 = r$, where n_1 is odd, n_2 is even, and n_4 is at most 4.
- 3. Build a generating function for a_r , the number of ways to make r cents change using pennies, nickels, dimes and quarters.
- 4. Find a generating function for a_r , the number of ways two six-sided dice can sum to r.
- 5. Let g(x) be a generating function. Describe using a sentence, what the coefficient of x^n is in $\frac{g(x)}{1-x}$.
- 6. Prove or disprove:

$$\sum_{0 \le k \le n} \binom{n}{k}^2 = \binom{2n}{n}$$

(Hint:
$$\left(\frac{1}{1-x}\right)^2 = \frac{1}{(1-x)^2}$$
)

- 7. Five distinct bags each have 8 identical marbles in them. Using generating functions, find how many ways there are to select 20 marbles, if you take at least two from each bag?
- 8. Suppose $a_{n+1} = ba_n + c$ and $a_0 = d$. Then, using generating functions, find a general formula for a_n in terms of n (and b, c and d).
- 9. Let $a_n = a_{n-1} + n^3$ and $a_0 = 0$. Using generating functions, find a formula for a_n .