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Before we start

Double functors
Slice(A) // Slice(B)

are in bijection with natural transformations

A B

F

&&
A B

G

88t��

The associated double functor is given (on the objects) by

A

A′

f
��
7−→

FA

FA′

Ff
��

FA′

GA′

tA′

��
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Words of wisdom

If you want something done right
you have to do it yourself.

And, you have to do it right.

Micah McCurdy
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The plan

• The theory of restriction categories is a nice, simply axiomatized theory of partial
morphisms

• It is well motivated with many examples and has lots of nice results

• But it is somewhat tangential to mainstream category theory

• The plan is to bring it back into the fold by taking a double category perspective

• Every restriction category has a canonically associated double category

• What can double categories tell us about restriction categories?

• What can restriction categories tell us about double categories?

• References

- R. Cockett, S. Lack, Restriction Categories I: Categories of Partial Maps, Theoretical
Computer Science 270 (2002) 223-259

- R. Cockett, Introduction to Restriction Categories, Estonia Slides (2010)

- D. DeWolf, Restriction Category Perspectives of Partial Computation and Geometry,
Thesis, Dalhousie University, 2017
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Restriction categories

Definition

A restriction category is a category equipped with a restriction operator

A
f // B  A

f̄ // A

satisfying
R1. f f̄ = f
R2. f̄ ḡ = ḡ f̄

R3. g f̄ = ḡ f̄
R4. ḡ f = f gf
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Example

Let A be a category and M a subcategory such that

(1) m ∈M⇒ m monic

(2) M contains all isomorphisms

(3) M stable under pullback: for every m ∈M and f ∈ A as below, the pullback of m
along f exists and is in M

C A
f
//

P

C

m′

��

P B
f̄ // B

A

m

��

y

m ∈ M ⇒ m′ ∈ M

ParMA has the same objects as A but the morphisms are isomorphism classes of spans

A B

A0

A

��m

��

A0

B

f

��

with m ∈ M
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Composition is by pullback

The restriction operator is (m, f ) = (m,m)

A B

A0

A

��
m

��

A0

B

f

��
� ¯( ) //

A A

A0

A

��
m

��

A0

A

��
m

��
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The double category

Let A be a restriction category

Definition

f : A // B is total if f̄ = 1A

Proposition

The total morphisms form a subcategory of A

The double category Dc(A) associated to a restriction category A has

• The same objects as A

• Total maps as horizontal morphisms

• All maps as vertical morphisms

• There is a unique cell

C D
g
//

A

C

•v
��

A B
f // B

D

•w
��

⇒ if and only if gv = wf v̄
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Theorem

Dc(A) is a double category

Remark

C & L define an order relation between f , g : A // B, f ≤ g ⇔ f = g f̄
Makes A into a 2-category. They say “seems to be less useful than one might expect”

There is a cell

C D
g
//

A

C

•v

��

A B
f // B

D

•w

��
⇒

if and only if gv ≤ wf . So our Dc(A) is not far from that 2-category. Perhaps it will turn
out to be more useful than they might expect!
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Example

In DcParM(A) there is a cell if and only if there exists a (necessarily unique) morphism h

A0

C
v ��

A

A0

??m

??

A

C

B0

D

w

��

B

B0

??
n??

B

D

A B
f //

C D
g
//

A0 B0
h //

Robert Paré (Dalhousie University) Seeing double June 1, 2018 10 / 34



Companions

Proposition

In Dc(A) every horizontal arrow has a companion, f∗ = f

Proof.

B B
1
//

A

B

•f
��

A B
f // B

B

• 1

��
⇒ 1 · f = 1 · f · f̄

A B
f
//

A

A

•1

��

A A
1 // A

B

• f
��

⇒ f · 1 = f · 1 · 1̄
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Conjoints

Proposition

In DcParM(A), f has a conjoint if and only if f ∈ M

Proof.

Assume f has conjoint (m, g), then there are α, β

A A

A

A

A B0
α // B0

A

g

��

A B0

A

A

A B
f // B

B0

OO
m

and

A B
f
//

B0

A

g

��

B0 B
β // B

B

B0 B

B

B0

OO
m

B BB

B

So mαg = fg = β = m which implies αg = 1
Thus α is an isomorphism and f = mα ∈M
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• If we suspect that A is of the form DcParM(A) we can recover M as those horizontal
arrows having a conjoint

• Is the requirement of stability under pullback of conjoints a good double category
notion?

• In Dc(A), a horizontal arrow f : A // B always has a companion f∗, and if it also
has a conjoint f ∗ then f∗ a f ∗ so

f∗ • f ∗
A

A

•
��

is a comonad, i.e. an idempotent ≤ idA

Proposition

In Dc(A), f∗ • f ∗ = f̄ ∗
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Tabulators

Proposition

DcParM(A) has tabulators and they are effective

Proof.

Given (m, v) : A • // B, the tabulator is

A0 B
v
//

A0

A0

A0 A0A0

B

v

��

A0 A0

A0

A0

A0 A
m // A

A0

OO
mOO

Conjecture: In a general Dc(A), v : A • // B has a tabulator if and only if v̄ splits
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Classification of vertical arrows

• The original definition of elementary topos was in terms of a partial map classifier

B • // A
B // Ã

• In a topos, relations are classifiable

B • // A
B // ΩA

• For profunctors
B • // A

B // (SetA)op

provided A is small

• How do we formalize this in a general double category?
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Classification (Beta version)

• The desired bijection

B •
v // A

B
v̂ // Ã

gives eA : Ã • // A and hA : A // Ã

• We express our definition in terms of eA

Definition
Let A be a double category and A an object of A. We say that A is classifying if we
are given an object Ã and a vertical morphism eA : Ã • // A with the following
universal properties:
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(1) For every vertical arrow v : B • // A there exist a horizontal arrow v̂ : B // Ã and
a cell

B

A

•
v
��

B Ã
v̂ // Ã

A

•
eA

��

εv

such that for every cell α

D

C

•
w ��

D B
g // B

CC A
f

//

B

C

B

A

B

A

B Ã
v̂ // Ã

A

•
eA��

α

there exists a unique cell ᾱ such that

D

C

•
w ��

D B
g // B

CC A
f

//

B

C

B

A

•
v ��

B

A

B Ã
v̂ // Ã

A

•
eA��

ᾱ εv =

D

C

•
w ��

D B
g // B

CC A
f

//

B

C

B

A

B

A

B Ã
v̂ // Ã

A

•
eA��

α
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(2) For every cell

D

A

•
w

��

D B
g // B

A

•
v

��

β

there exists a unique cell ¯̄β such that

D

D

•
id ��

D B
g // B

DD A//

B

D

B

A

B

Ã

B Ã
v̂ // Ã

Ã

•
id��

¯̄β

D

A

•
w ��

D Ã
ŵ // Ã

A

•
eA��

εw

=

D B
g //D

A

•w

��

B

A

•

��

B Ã
v̂ //B

A

•

��

Ã

A

•
eA

��

β εv
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Complete classification

• How do we understand this?

• Take a more global approach
Assume A is companionable, i.e. every horizontal arrow f has a companion f∗
Then we get a (pseudo) double functor

( )∗ : QHorA // A

C D
g
//

A

C

h

��

A B
f // B

D

k

��

α

{� 7−→

C D
g
//

A

C

•h∗

��

A B
f // B

D

• k

��
α∗

Exercise!

Definition

Say that A is classifying if ( )∗ has a down adjoint (̃ ),
i.e. a right adjoint in the vertical direction
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Bijections

The adjunction can be formalized in terms of bijections

A

B

��
•v B Ã

v̂ //

More precisely, for v : B • // A there exists a v̂ : B // Ã and an isomorphism

A A

Ã

A

•eA

��

Ã

A

Ã

B

Ã

•(v̂)∗

��

B BB

A A

B

A

B BB

A

• v

��

∼=

This can be expressed without mention of ( )∗ because we have a bijection
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Bijections (cont.)

C A
f
//C

Ã̃A

A

eA

��

Ã

DD B
g // B

Ã

• (v̂)∗
��

C A
f
//

D

C

•w

��

D B
g // B

A

⇒

D

C

•
w ��

D B
g // B

CC A
f

//

B

C

B

A

B

A

B Ã
v̂ // Ã

A

•
eA��

⇒

Yonedafication now yields the single-object definition
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Kleisli

• Given a monad (T , η, µ) on A we get a double category Kl(T )

• Objects are those of A
• Horizontal arrows are morphisms of A
• Vertical arrows are Kleisli morphisms i.e.

B

A

��
•v is A

v̂ // TB in A

• Cells

B B′
g
//

A

B

•v

��

A A′
f // A′

B′

• v′

��
⇒ a unique one if

TB TB′
Tg
//

A

TB

v̂

��

A A′
f // A′

TB′

v̂′

��
commutes
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Kleisli (cont.)

• Kl(T ) is companionable
For f : B // A,

A

B

��
•f∗

is given by

B

A

f

��
A

TA

ηA

��

i.e. f∗ = ̂(ηA · f )

• Kl(T ) is classifiable

A

B

��
•v B TA

v̂ //

- eA : TA • // A is îdTA

- hA : A // TA is ηA
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• Double functors Kl(T ) //Kl(S) correspond to monad morphisms (F , φ)

A
F // B

φ : FT // SF

such that . . .

• Horizontal transformations correspond to the 2-cells in Street’s 1972 JPAA paper,
Formal theory of monads

• Vertical transformations correspond to the 2-cells in Lack & Street’s 2002 paper,
Formal theory of monads II
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Restriction functors

• A restriction functor F : A // B is a functor that preserves the restriction operator,
F (f̄ ) = F (f )

Proposition

A restriction functor F gives a double functor Dc(F ) : Dc(A) // Dc(B)

Question: Is every double functor F : Dc(A) // Dc(B) of this form? F is determined by
a unique functor A // B which preserves the order and totality. Does this mean it
preserves restriction? Probably not. Does Dc at least reflect isos?

Theorem

A double functor DcParMA //DcParNB comes from a unique functor F : A //B which
restricts to M //N and preserves pullbacks of m ∈ M by arbitrary f ∈ A. Thus it does
come from a restriction functor
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Transformations

Recall that a horizontal transformation t : F // G between double functors A // B
consists of assignments:

(1) For every A in A a horizontal morphism tA : FA // GA

(2) For every vertical morphism v : A • // Ā a cell

GĀ GĀ
tĀ

//

FA

GĀ

•Fv

��

FA GA
tA // GA

GĀ

•Gv
��

tv

satisfying

(3) Horizontal naturality (for horizontal arrows and cells)

(4) Vertical functoriality (for identities and composition)
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Let F ,G : A // B be restriction functors. Then a horizontal transformation

t : Dc(F ) // Dc(G)

(1) assigns to each A in A a total morphism

tA : FA // GA

(2) such that for every f : A • // Ā in A we have

FĀ GĀ
tĀ

//

FA

FĀ

•Ff

��

FA GA
tA // GA

GĀ

•Gf
��

≤

(3) and t is natural for horizontal arrows (i.e. for f total, we have equality in (2))

This is what C & L call a lax restriction transformation
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Proposition

Let M ⊆ A and N ⊆ B be stable systems of monics and F ,G : A // B functors that
preserve the given monics and their pullbacks

Then horizontal transformations Dc(F ) // Dc(G) correspond to arbitrary natural
transformations F // G

Restriction transformations correspond to cartesian ones

There is a notion of commuter cell in double categories, and requiring the cells in (2) to
be commuter cells makes them equalities
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Vertical transformations

A vertical transformation φ : Dc(F ) // Dc(G)

(1) assigns to each object A of A an arbitrary morphism of B

tA : FA • // GA

(2) will be automatic

(3) is natural with respect to all morphisms

(4) is vacuous

Question: Is this any good?
There are other notions of vertical transformation, e.g. the modules of

- ”Yoneda Theory for Double Categories”, Theory and Applications of Categories, Vol.
25, No. 17, 2011, pp. 436-489
which generalize to double categories the modules of

- Cockett, J.R.B., Koslowski, J., Seely, R.A.G., Wood, R.J., Modules, Theory Appl.
Categ. 11 (2003), No. 17, pp. 375-396

Project: Investigate the significance of lax (oplax) double functors and modules for
restriction categories
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Cartesian restriction categories

A restriction category A is cartesian if for every pair of objects A,B there is an object
A× B and morphisms p1 : A× B // A, p2 : A× B // B with the following universal
property

A× B

B

p2

��

A

A× B

??

p1

A

B

C

B

g

**

A

C

44
f

A

B

C A× B
h //

≥

≥

For every f , g there exists a unique h such that

p1h = f ḡ

p2h = g f̄

There is also a terminal object condition
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Double products

Recall that A has binary products if

(1) for every A,B there is an object A× B and horizontal arrows p1 : A× B // A,
p2 : A× B // B which have the usual universal property with respect to horizontal
arrows

(2) for every pair of vertical arrows v : A • // C and w : B • //D there is a vertical
arrow v × w : A× B • // C × D and cells

C × D C
q2

//

A× B

C × D

•v×w

��

A× B A
p1 // A

C

• v

��

π1

C × D D
q2

//

A× B

C × D

•v×w

��

A× B B
p2 // B

D

•w

��

π2

with the usual universal property with respect to cells
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Proposition

A is a cartesian restriction category if and only if Dc(A) has finite double products

Proof *

(1) Suppose A is a cartesian restriction category. The universal property of product is
the usual one when restricted to total maps
Given vertical arrows v : A • // C , w : B • //D we get a unique v × w

C C × Doo
q1

A

C

•v
��

A A× Boo p1
A× B

C × D

• v×w

��
≥

C × D D
q2

//

A× B

C × D

A× B B
p2 // B

D

•w
��

≤

and

Y C
g
//

X

Y

•z

��

X A
f // A

C

• v

��
≤ &

Y D
k
//

X

Y

•z

��

X B
h // B

D

•w

��
≤ ⇔

Y C × D
(g,k)
//

X

Y

•z

��

X A× B
(f ,h) // A× B

C × D

• v×w

��
≤

so Dc(A) has binary double products
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(2) Suppose Dc(A) has finite double products
Given

C

B
•
g ''

A

C

77
•
f A

B

we have h = C C × C•
∆∗ // C × C A× B•

f×g //

and cells

A× B A
p1

//

C × C

A× B

•f×g

��

C × C C
q // C

A

• f
��

C × C C

C

C × C

•∆∗
��

C C
1C // C

C

• id

��

≤

≤

so p1h = f (f × g •∆∗) = f ḡ

*Warning: Some details may not have been checked
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Homework
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