The double category of Abelian groups

Robert Paré

Octoberfest

October 29, 2022

Double categories

Rel

A, B, C, D sets

f,g functions

R, S relations

 $R \subseteq A \times C, S \subseteq B \times D$

 α is implication: $a \sim_R c \Rightarrow fa \sim_S gc$

A thin double category

Set

A, B, C, D sets

f,g functions

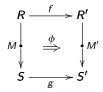
S, T spans

 α morphism of spans:

Vertical composition uses pullback

Spans are "constructive relations": instead of $a \sim c$ we have $a \xrightarrow{s} c$

*R*ing



R, S, R', S' rings

f,g homomorphisms

M, M' bimodules

 ϕ linear: preserves + and $\phi(smr) = g(s)\phi(m)f(r)$

Vertical composition is tensor

$$N \bullet M = N \otimes_S M$$

A, B, C, D small categories

F, G functors

 $P, Q \text{ profunctors:} \qquad P: \mathbf{A}^{op} \times \mathbf{C} \longrightarrow \mathbf{Set}, \quad Q: \mathbf{B}^{op} \times \mathbf{D} \longrightarrow \mathbf{Set}$

t natural transformation: $t: P(-,=) \longrightarrow Q(F-,G=)$

Vertical composition is given by a coend, "matrix multiplication"

Are there useful vertical morphisms of Abelian groups?

What are we looking for?

- Come up in practice (homology, cohomology, representation theory)
- Have good double category properties
- Relate well to other double categories, Set, Ring, *R*-Mod (?), Graded Abelian groups, ...
- Hom, ⊗
- etc. ???

Because Ab is a nice category

- 1. Span(Ab)
- 2. Rel(Ab) (Puppe, Mac Lane, Grandis, Zanasi, ...)
- 3. $co \mathbb{R}el(Ab)$
- 4. coSpan(Ab) (Fong, Baez, ...)

Candidates II

Because Ab relates well to other categories

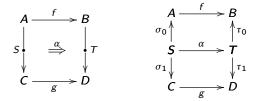
- 5. Affine superspans (P. Octoberfest 2015)
- 6. Affine relations (Zanasi)
- 7. Affine corelations
- 8. Affine structured cospans (Fong)
- 9. $\mathbb{K}l(\mathbb{G})$ \mathbb{G} = free Abelian group comonad in **Ab**
- 10. $\mathbb{K}l(\mathbb{T})$ \mathbb{T} = tensor algebra monad in **Ab**

Candidates III

Because an Abelian group is itself a category

- 11. An Abelian group is a monoid (so a category), and we can take profunctors Get sets with left and right actions (Egger)
- 12. An Abelian group is a monoid in **Group** We get groups with left and right actions
- 13. An Abelian group is a monoid in **Ab** We get Abelian group with left and right actions \underline{A} Actions are with respect to \oplus ; $A \oplus X \longrightarrow A$
 - These are equivalent to cospans (Egger)
- An Abelian group is a group category (i.e. a group in Cat)
 We can consider a category with left and right actions (Daniel Teixeira)
- 15. An Abelian group is a discrete monoidal closed category monoidal profunctors

Span(Ab)



For $s \in S$ with $\sigma_0(s) = a$ and $\sigma_1(s) = c$ write $s: a \longrightarrow c$

We have

$$s: a \longrightarrow c \& s': a' \longrightarrow c' \longrightarrow s + s': a + a' \longrightarrow c + c'$$
$$0: 0 \longrightarrow 0$$
$$-s: -a \longrightarrow -c$$
$$\alpha(s): f(a) \longrightarrow g(c)$$

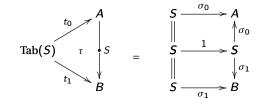
Just because Ab has pullbacks

Span(Ab) has:

• Companions f_* and conjoints f^*

$$f_* = (A \stackrel{1_A}{\longrightarrow} A \stackrel{f}{\longrightarrow} B) \qquad f^* = (B \stackrel{f}{\longleftarrow} A \stackrel{1_A}{\longrightarrow} A)$$
$$\frac{a \stackrel{\bullet}{\longrightarrow} b}{f(a) = b} \qquad \frac{b \stackrel{\bullet}{\longrightarrow} a}{b = f(a)}$$

Tabulators



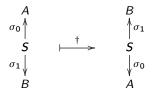
Effective $(S = t_{1*} \bullet t_0^*)$ and unitary (tetrahedron)

Still because Ab has pullbacks

· Cauchy: Adjoint spans are representable

$$S \dashv R$$
 is $f_* \dashv f^*$

Dagger structure



Span(Ab) is a Cartesian double category (Aleiferi)

In fact \oplus : $\operatorname{Span}(Ab) \times \operatorname{Span}(Ab) \longrightarrow \operatorname{Span}(Ab)$ is both a left and a right double adjoint to the diagonal

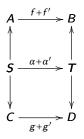
Span(Ab) has cotabulators

Unitary

But effective iff σ_0, σ_1 are jointly monic

Because Ab is preadditive (an Ab-category)

We can add horizontal arrows and cells



Adjoint pairs extend to spans

The adjoint pair Ab $\underset{F}{\overset{U}{\longleftarrow}}$ Set extends to an oplax/strict double adjunction

$$\operatorname{Span}(\operatorname{Ab}) \xrightarrow{U} \operatorname{Set}_{F}$$

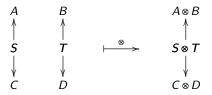
which is double monadic

But there doesn't seem to be any good adjunction

 $\mathbb{R}ing \implies \mathbb{S}pan(Ab)$

The tensor product functor \otimes : $Ab \times Ab \longrightarrow Ab$ extends to an oplax normal double functor

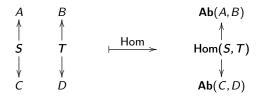
 \otimes : $Span(Ab) \times Span(Ab) \longrightarrow Span(Ab)$



Associative and unitary but not a strong double functor

We don't get a monoidal double category in the sense of Shulman

Hom



Hom(S, T) is the Abelian group of all cells

Theorem

Hom is a lax normal double functor $\operatorname{Span}(Ab)^{op} \times \operatorname{Span}(Ab) \longrightarrow \operatorname{Span}(Ab)$.

For each Abelian group we have an oplax/lax double adjunction () $\otimes A \dashv Hom(A, -)$.