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0. Introduction 

A func:tor <I : I +A is called final if for every B and every I‘ : ,4 3 B the ctilinlit 

of r exists whenever the cotimit of MT exists and in this case they are isomorphic. 
It is well known (see for example [ 11) that (s is final if and only if the comma cate- 
gory (A. a) is nonempty and psthwise connected for every A f [A I. 

In [ 12). a diagram CJi : I --, A is said to have an ahlute c&nit if it has a colimia 
which is preserved by every functor r : A --* B for every B. A diagram clp has an ab- 
solute colimit if and only if certain morphlsms of A are cor,,lected in the comma 
category (W, *) for every I E fl{. 

The similarity of these two properties and also of their characterizations leads us 
to look for a common gcnetalizatiun. We are naturally led to associate to the dia- 
gram @ : I -+A, the functor Q(-~ +) : AOP + S which associates to A E 1 A 1 the set 
of pathwise connected components of the comma category {A, a). 

The basic resuit, which we prdve in Section 3, is the folloying: Given two dia- 
grams (1, : I + A and \r, : J -+ A fher, n&--, ip) 2 n,,(--, \Ir) if and only if for every B 
andeveryI”‘:A-,R, IW and lim PI? exist simultaneously and when they do 3 
exist are isomorphic. 

Thus all the “functorial” coiimit properties of the diagram 4, are reflected in the 
functar no( --, a), whereas the “accidental” colimir properties of @ are forgotten. 
If we take J = 1, then we get the characterization for absolute colimits. If, instead, 
we take q = A then we get the characterization for final functors. 

This suggests that if we want to study colimit properties of a diagram we should 
study this associated functor rather than the diagram itself. So, after setting the stage 
in Section 1 with some preliminary material, we study in Section 2 the properties of 
the functor no(-, +j. Section 3 relates these functors to colimifs. 

* This research was done while the author held a Killam Postdoctoral Fcll~~wship at Dalhousie 
University, Halifax. A preliminary report on this work was presented at the Midwest Catcpory 
Seminar in Ziirich, August 1970. 
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One of the advantages of considering aD( ,9) rather than (fi, itself is that certain 
operations can be performed or conditions imposed on these functors which would 
btl awkward on the diagrams. For example, natural transformations I+,( - .4j --* no(. ,‘lr) 
arc rwt always induced by morphisms of diagrams (b + JI, and so we can take c’olimits 
of such natural trsnsformations, an operation which would be difficult to perform 
on the diagT’ams themselves. The examples of Section 4 illustrate this. 

It is a welt known result, in disguise, that every functor I? A”P -+ S is of the form 
nIl( , a) for some diagram a. Thus we can use the properties of colimits to obtain 
properties of set-valued functors. Also certain conditions or operations which are 
natural on diagrams are awkward on zhe functors. As Ticrney has pointed out. the 
left Kan extension is more easily given in this context. He has used such methods to 
compute Kan extensions and to study their properties (see also IZl). 

In practice, we are not interested in ull functors I’ : A --, B but often in a restricted 
class of functors such as coprtlduct preserving functurs or finite t’dimit preserving 

fundrm. Thus, in Section S we restrkt aursckves to functors r : A + B whidl pm 

SC~VC a given class of colimits in A. We get results analogous to those of Section 3. 
ft is difficult to imagine how these characterizations could have been obtained with- 
out the functors z&-, 4~)~ In this rejativc sense, the TAbsolute coiimits arc intuitively 
those whose existence is forced by the existence of the given class of colimits. This 
forcing is done in a functoriaI way. 

in Section 6, we work out iv detail some examples of the relative theory in the 
r;ase of finite coproducts. 

1. Preliminaries 

Alt categories are assumed to be small unless they are cfcarly otherwise. Thus the 

categories denoted by I, J, . . . . A, 5. . . . will be smait. The categories S and Cat of small 
sets and small categories, respectively, are large, as well as most categories canstruc- 
ted from these such as the functor category .S@p and the comma category (Cat, A) 

The “‘horn” functor t;,r a category A witl be denoted iy Aji,-. --) : Am X A -*S 

or more frequently by ( -. ---1. Composition is written .4 -+ A + A” = ab, and the 
identity on A is written A. 

Let A be a category and A, A’ E iA I. We say that A and A’ are prhwise ~‘r~nnec- 
ted if there exists a finite number of objects of A, A = A,, A,, . . . . A, = A’, and for 

each i = I, 2, . . . . t? a morphism Ai, 1 + Ai OI Ai -+ Ai-1 . This is an equivalence reta- 

tion on the set of objects of A and the quotient set will be denoted by n& and cal- 

led the set of (connected} components of A. no extends to a functor Cat --c S which 
is Ieft adjoint to the functor &s : S + Cat which associates to a set the discrete ca- 
tegory on that set. More explicitly, nO may be computed as the following coequa- 
lizcr in Cat : 

a0 
2- A -A+nt,A. 
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Given a hnctor U : B + A, WC s;ty that it CIQS a reft &j&It at A E /A 1 if the func- 

for (A. 0’ ) is representable. If (A, U-- ) z (U, -1, we say that B is GKJ value ~f’rhe 

kf? adjoirrt to UPS A. Let A, ,++ A be the fu!! subcategory of A determined by those 
objects at which t/ has a left adjoint. The value of the left adjoint at,an object is 
unique up to isomorphism, and once a representative is chosen foreach object in 
A,, the left rrdjoint extends z&&v to a functor F : A, + B. We will usually 
write F : A 3 B and specify that it is partially defined. In the sequel, when we speak 
of partially defined functors, we will mean a functor defined on afu/f subcategory 
of the domain category. Since the pullback of a full subcategory along any functor 
is still a futl subcategory, composition of partially defined functors is easy (like the 
cornposition of partially defined functions in S). 

Remark. We could use the “profunctors” of Benabou, but the extra generality is not 
needed and partially defined functors are more conceptual. For example, the co- 
limit functor is usually thought of as a partially defined functor, left adjoint to the 
diagonal. Furthermore, the composition of partially defined functors is simple com- 
pared to the composition of profunctors. 

fi&. (A, UT) ^c (F:4, IX’); thus (A, WV-) 2 ( FA, V-- ) and the result follows. 

The statement “X exists if and only if Y exists. and when they do exist they are 
isomorphic” will be written X EZ Y. Thus the conclusion of Proposition 1. I would 
be: FL4 exists * CXA 2 HA. 

Proposition 1.2. Let U : B --t A and <r, : I -+ A be functors urtd Iet I= : A --* B be the 
partiuf[v dejhed left djoirrt of U. Assume that FW exists for every J E 111. Therl 
t(‘tt, is u functur I 3 B urtd is the value of the left adjuint to U1 at a. 

Roof. The result follows from the following sequence of natural bijections: 

Fw-4 
-._ ._-- -.- 
I-indexed compatible fami&stk/ + !VI>I 

_ . ___ 
Efldeied compatible families MI -+ tJ@l>, 
-_--” .- _...__ _ ..- . u____ __ _----I- 

fD-,tJJI 

i-d& 

Proposition 1.3. In the same situation us above, if 19 Q, exists then 
E?$cp “li@W. 



Proof. Consider the following commutative diagram: 

By hypothesis, + has a Ieft adjoint at Q, and by Proposition 1.2,Ul has a left ad- 
joint at *. The result follows from Proposition 1.1 m 

We will make much use of the smcalled comma categories. Let @ : I -+ A and 
\21 : J -+ .4 be func tors. The c~nznta cafqcq (a, q) has as objet ts ordered fripies 
(I, &+ W, J), where I E f/l, J E \JI, Q EA. There will us~lly be no confusion if 
we denote this ordered triple by *IL JIJ. A morphism from *I-ff, \cIJ to 
W’s $J” is an ordered pair of maps (i, i), i E I, ) E J such that 

~omrr~tcs. (+. \cI) c‘omes equipped with two projections a*(@, 9) : (@, q) -+ I and 
a, (G, @) : (a, \b) + d delined in the obvious way. 

Two special cases of particular interest are (A, Jr) obtained by taking CD to be the 
functor I -+A with value A, and (Cat, A) the category of diagrams in .4 obtained by 
taking Q, to be the identity on Cat and \t the functor I *Cat with value A. 

In dealing with coiimits, the following generalization of (Cat. A) involving the 2- 
structure of Cat is useful. Let [Cat, A) have the same objects as (Cat, A ). i.e., dia- 
grams in A. A morphism frotn @ : I -+ A to q : J -+ A is a pair (r, y ) where 
i‘:I+Jandy:++qr, 

2. The basic functor 

For any functor 4 : I -+ A, a morphism Q : A -+ A’ of A induces a functor 
(A’, *) + (A. *) b y composition. Thus the comma category gives us a functur 

(-, *j: PP --+ Cat. 



If we compose ( - , a) with nO : Cat +S, we get the functor 

Ro( , ‘p) : AC’P + s. 

IL4 L W is an object of (,4, @). we will denote its equivalence class in n&l. a) by 

[AL W]. 

The basic obiect of our study is the functor M : [Cat, A 1 --c!~W”~ which sends a 
diagram tf) : I -hi to the functor no{ - , Q1) : Aop + S. If (r, y j is a morphism If, + \I’ 
in [Cat, A 1, then M(r, 7) : Q(‘--. <I) + Q( --, *) is defined at A by 

I 

We will denote the restriction of M to (Cat. A) also by M. 
The fundamental property of this construction is the following: 

Roof. The theorem says that n&4, ‘1’) % I&, (A, W), the colimit being taken in S. 
A simple computation shows this to be true. 

Corollaq! 2.2. Ltt A : 0 3 A. irherr n*( - , A ) h* (---, A ). 

Proposition 2.5. nO( -- , A ) 2 1, where I : Ac3P + S is the functor with constant 
vu1144 1 . 

hoof. The comma category (A, A ) has A : A --, A as termina.1 object, and is therefore 
connected. 

Proposition 2.6. Ler a0 : f 2 3 f be the fitnctor which sends a morphism of I to its 
domain. Then I$,( -, 3, ) 2 1 . 

Roof. 3, has a left adjoint, the diagonal functor A : I +I*. Thus by Corollary 2.4, 
n,,( ‘.- t a,, ) 2 n&i-, I) 2 R&-, &A which is isomorphic to 1 by Proposition 2.5. 

Let r : A + B be a functor. The Kan extension theorem shows that the functor 
Sr’OP: SBOP +SAoP h as a left adjoint (everywhere defined) which we shail denote 
by c1!. One of the properties of r! which we shall use often is that it makes t 
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lowing square commute up to isomorphism: 

Proof. This is just a restatement of Theorem 2.7 using the adjomtness between I‘! 
and .W’t’. 

From Coroitsry 2.9 we conclude that the natural transformations I+&-- , (rp) --* F 

arc in rutural bijection with the natural transformations n,,(----, I) --c fib, but by Pre 

pmion 2.5, I+& --, I) - I. Since the natural tramflorrnations I -+ F+ correspond 
bijectively to elements of 1@11;“9, we conclude that n.t. (ncl( .’ .9), F) 2 I@ ld&. If 

we tdx cf: = A : 1 -+ A. WC get n.t. (( ‘, A !. 61 * F/1, the Yoneda lemma. 

Proof. W’e only give the isontr)rpfiisms, the details being left to the reader. For 

..G vt. 



Proof. Consider the functors Td : A --* I and rI: I --* 1. The comma category (r,.T,) 
“?r ,4 X I and d,,( TA ,r,) = Pt. Thus by Proposition 2. IO, no( , P, ) 

- q,l 9 a,,( a,, r r,r, - q,( cd .. 7 T,) * I+)( . . T’)*TA. But it is easily checked that 

?I( , T,) : 1 -* S is just R{,(J) and the result follows. 

The following theorem can be found in 171 and 191. 

Proof. The value offi at FE .$@I’ is the corresponding fibered category over A with 
dixrcte tibers, i.e. the comma category ( Y. F) with its projection a,( Y, F) onto A. 
where Y : A --, S 4t’p is the Yoneda functor. 

MG(F) = ztr( --, a,,( Y, F)] which by Proposition 2.10 is isomorphic to q,(Y( --),F) 
which hp Corollary 2.2 is isomorphic to n.t. ( Y( -- ),F) which by the Yoneda lemma 
is isomorphic to I+‘, Thus J%$ - SA”p. 

where H, : f )-+ (M : @I --* a/J, The adjointness is easily checked. 

We see from this that every functor FE SAc’p is of the form q,( . . +) for some 
diagram Cp. Furthermore this is just the w&known fact that every functor is a co- 
limit of representables. Indeed, 

As Ticrney points out, this gives us an efficient method for computing the values 
of the left Kan extension. Let 1’ : A -+ R and let FE SA”P. Then F Lc. nu( -. . ‘11) for 
some (tp 4 the discrete fibration over A associated to F) and then I’!(F) cc l’!(n,,( - . cb)) 
4 q,( v I’@). This idea has been developed extensively in 121. 

We conclude this section with a result on categories of fractions which we shall 
use later. Let A be a category and C a subcategory with the same objects 3s .4. Then 

P : A * A [K* 1 IS defined by the fact that P sends the rnorphisms of C to isomorph- 
isms in A fz”* 1 and is universal with this property (see 141). A [Z-l ] has the same 
objects as A and has as morphisms A --, A’, equivalence classes of finite sequences of 



morphisms 



Thcartm3.2.Letdr:I+AandWJ+AbediagramsitzA. XkdimI’QsdmrJI 
for ewry category Bad every fumw I” : A + B if and only if n& @) 2 n&q). 
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LetA:: + SA Op be a diagratn and assume that for every L E 1 L I. AL = Q( - , 0, ) 
for some diagram 4p_ : fL + A. This is always true by Theorem 2. I 2, but 4p need 

not be the canonical diagram GAL. The natural transformations Al : zo( - . &, ) 

-+ no( _ , eL’) are not necessarily induced by morphistns 9, -0 a,_. in ICat, ,4 I. If 

for some i‘ : A -4% fim lWL exisfs for evkry t E f LI, then 151 MI_ extends to a 
functor in L, namely lY+ SJ~*~-+ S@‘p-+ 43. 

Proof. n&-, *j 4 I@ Q(--, et)=, r! I+)(-. *j 2 I’! I$l, na(---. G,) 
* @_ r! n&-, $,,) * I$(--. !W) % I$Q, no( -. P&j for every r : A I* B, If for 
every Ii E tk 1. I$ r$_ exists, then R Q(--, I’$,) also exists and we have 
‘i$q R q)( ‘-, mr. ) zz R lir& n()( -‘, 
)nI, ($m r9,). 

raL) 4 R 7++-* r4q. THUS i$~ ret, 2 

COMXCC~Y. kt B be the full subcategory of SAW determined by the represent- 
ables, the functars IT&-, $j for every L E IL/, R&-, a), and QL I++, 4~~). B 
is then a small category. and let r : A 4 B be the restriction of the Yoneda functor. 
Then I@ I’d, exists and is n&-, @,a ). From the hypothesis of the theorem we con- 
clude that I++, W ‘c 1$14 flO( -, ala )+ 

Let @ : I* A 1~ a diagram and JA : cf, -* A a natural transformation. fl : + 3 A is 
a weak colimit diagram if for every p’ : 9 -+ A ’ there exists (not nec‘essarily unique) 

u : A -+A’ such that up = $. We state the following proposition without proof. No 
further use 41 be made of it except in the two subsequent corollaries. 

Proposition 3.7. Evq~ weuk cofimi~ of’ PP is u weak c&nit of PP fbr all B and all 
r : A + B is urrrl cmk’y if I++-, e) is u retract of IT&-, 6). i.e. if and unfy if here 

exist nuturul tmnsforrnutions q&-- , @jL n&. *e I+&- , @) such that ut = 
flo(-., w- 

Corollary 3.8. A diugmn <t, : I -, A has on absolute weak colimit if urtd onl~~ if 
q( -, @) is u rettuct of a rcpresentubie. 

If A has split idempotents, then a retract of a representable is itself representable. 
In this case, 9 has an absolute weak colimit if and only if it has an absolute calimit. 

Let us say that a functor ?Q, : I -* A is weukly flml if for every B and every 
c‘ : A -+ B, ail weak colimits of I’W are aiso weak cotimits of I‘. 



It is clear from the definitions that the composition of two finat functors is apin 
final and that the composition of two weakly final fumtm is weakly fln3i. 

If we have two functors I’-‘2 ls A such that @+’ is weakly fin3t. then 3, is 
weakly finat. Indeed, WC have 3 canonica% natural trar’tsfcm~ation zo( --, We’) + 
I+)( , ‘P) and thus the assertion is obvious in view of Carollnry 3.9. flowevm, if 
<ttP’ 1s final we mmot conclude that CP is final, as we can SW from the Mowing 

example: 

il 0 
1-1+1---d. 

It is clear that if 4~ : I + .4 and \Ir : J -+ A are two diagrams. and if A : I -+ J is such 
that \ItA = * and A is final then. 3s f3r as coiimits are ccxxerned, 41 and \cI are 
quivafent diagrams. In the remainder of this sectictn we show how our c‘onstruction 
refatcs to this. 

in (A, (t). Then by Proposition (2. t 3), Y is also final. The result fobws from the 
fact that the composition of final functors is final. 
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Let 2Z he the subcategrlry of (Cat. A ) consisting of those morphisms 

such that h is tinal. Then M(A) is_an isum~rphism. Furthermore. by Theorem 3.10 
the unit of thrr adjunction M -.-i M is in E. Therefore, by Proposition 3.1 1, C satis- 
fies a cakcufus of left fractions and (Cat, A ) [ Xml ! is equivalent to SA”p. Under this 
equivalence, a diagram 9 is sent to the functor Q( *-, cb). So if we adopt the point of 
view that two diagrams + and \Ii with rt, = \IrA should be identified if ‘1 is fin& then 
we are automatically led tc> associate 7+,( - , @) to the diagram +. This result shows 
that, although a natural transformation Q( --% *) -+ zo( - * J/) is not necessarily in- 
duced by a murphism of diagrams in (Cat, A ) or even in (Cat. A 1, there is a diagram 
69 and morphisms @ -+ 69 and \tr + @ in (Cat, A ) such that the morphism q -+ 8 is 
given by a final functor and the given natural transformation is equal to the induced 
natural transfr~rmation no( -, 9) + no(-, e) foliowed by the inverse of the induced 
natural isomorphism na( .. , JI) + q,{ - .63). 

4. Examples 

Example 4.1. One might suggest. as a naive generalization of cclfinsl subsequence, 
that tt e followinl; condition be unposed (;n ;r functor 9 : I -+ A : for every A E 1~1 i 

there exist I El11 and a : A -41 a morphism of A. This is equivalent to saying that 
the canonical morphism no( -, a) + 1 is an epinlorphism. By Corollary 3.6, this is 
equivalent to the condition that fc>r every I’ : A -+ B for which 1% PB and I$ I‘ 
exist, the induced morphism j@ W + I$ r be an cpirrtorphism. 

Example 4.2. Let P : ,4 X I + A be the projection onto the first factor. By Corollary 
3.1 1, R&-J) 2 nc,(T) which is isomorphic to n,,(1)* 1 (the cuproduct of J+#) 
ccrpies 19f It )* Therefore fi&- , P’) % rro(l)vo( --, A ), and by Theorem 3.5 this IImplies 
that for every r : A + B fur which Iim r exists, 19 i‘P ‘zr q,(/)*l$ r. -b 

Example 4.3. Let * : Iii -+/be the inclusion and let D,,, D, : gl*l + 111 be the func- 
tljrs which send a morphism to its domain and c;JdOmain, rcspcc[lbeiy. 

Q(,--% W = & (-. 1). thus nO(l, a) is the set of all morphlsms of I with domain 1. 
Q( -- 9 w&l = I.-l,,, (--. , I) thus ~(1, M++ is the set of all composable pairs of nwr- 
phisms of I such that the domain of the first is I. 
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We have two natural transformations no(--, WI,) 3 no{--, a). One sends the 
composable pair 12 9% * to the morphism Is l and is induced by the morphism 
of diagrams 

The other sends the composable pair I”- l -II, l to the morphism f% l and is in- 

duced by the morphism of diagrams 

where f : *Do --c CPD, is the canonical natural transformation. 
The coequal&r of these two natural transformations is easily seen to be l 

1 2 nu( -‘, I). Therefore, by Theorem 3.5, for any r : I -+ B for which Q r(f) and 
L_I~__. I’(I) exist, I I‘ is isomorphic to the coequalizer of the two induced maps 

This is the well-known construction for &limits. This construction is absolute in the 
sense that any functor which preserves the two coproducts in question will preserve 
the cotimit if and only if it preserves the coequ:lizer. 

Example 4.4. if we assume that I has binary products, we obtain the following *variant 
of’ Exampie 4.3. Lirt djr : lli + I be the inclusion as before. Let R : 111 X 111 --*I be 
the functor which sends a pair of objects to their product in 1. 

Q(/, II) is the set of pairs of maps with domain I, i.e., I@, 11) ‘I- ~(1, <P)Xn&cl,). 

WC havf the two projections 

Q(‘- ‘) (‘1 x qJc--, 9) 3 q)(--, @) 

whose coequalizer is quite obviously 1 2 n&-., I). 
Therefore, for any I’ : I + B for which 11, I’(I) and U1,,e F(I XI’) exist, 19 I’ is 

isomorphic to the cocqualizer of 

r 1 I--(/ x 1’) 3” 11 I-(f). 
;*f# I 

This construction is also absolute in the above sense. 



The dual situation shows that the sheaf axiom says that certain limits are pre- 
served (see 161). 

Example 4.5. Another variant of Example 4.3 is the following: Let us say that a 
czttegory I is$Mt&” ~LWWUM if it has finitely Mary objects and if there is a firitc 
set X of morphisms of I such that any murphism of I is a composition of motphisms 
from X. 

Then if we let Cp be the same as before but replace \Ir by its restriction to X, the 
argument of Example 4.3 goes through and we see that the colimit of any diagram 
I‘ : I -+ H can be computed as the coequalirer of 

l.1 i’(f) 3 1.i r(l). 
j-8 .‘ _ *x i 

Ikrth coproducts are finite, so if a category B has all tlnite colimits, then it has ail 
finite]?/ generated cohmits. Also. if a functor preserves these finite colimits. then it 
preserves finttely generated Colimits. 

Any diagram is a filtered colimit of its finitely generated subdiagrams in (Cat, A), 

therefore WC wncltrdc that ail colimits can be constructed from finite cohmits and 
filtered ~&-nits. 

5. The dative theory 

In practice. we clre not Concerned with all functors I‘ : A 4 B but often with a 

restricted class of functors. In this section, we consider those functors r : A -+ B 
which send a given set of scones in A to cslimit diagrams in B. Thus we want to 
know whic:h diagrztms are cswntially the same as far as coiimtts are mtxerned it’ we 

fore certatn cc!cones to bc colimit diagrams. If the cocones we arc given are already 

cotimits. then the absolute coiimits are intuitively those colimits that can be “func- 

torially constructed” from the given ones. 
A LWWW in A is a natural transformat ion p : 63 4 A where 8 is a diagram in A 

and A is an object of A. Let C bc a set of cocones in A. A functor I‘ : A --, B wilJ be 

c;tlled ;I C-fimw if it transforms the cocones of C to coiimits in B. In general, a 

prefix “C” will mean that we are considering only C-f’unctors rather than all functors, 
e.g., C-final. C-absolute, etc. 

Let Sfp denote the full subcategory of S@P consisting of those functors 
~0 w -+S which convert the cocones of C to limits in S. Let ic : Stop + SA”P be the 
inclusion. Gabriel and llimer [ 3 1, Popescu [ I 3). Freyd and Kelly, and others have 
shown that ‘c has a left adjoint Rc. 

Sme examples of ref!er: tive subcategories of func tar categories obtained in this 
way are the following: 

(a). Sheaves un a Gruthendieck topology. 
(b). Algebras over a theory in the sense of Lawvere IS). 



Cat ++ S@p where A is the category of finite ordinals with order preserving 

rttaps. 

Monoids *-* Cat - sAop. 
s M Cat 2-, sA(ll’. 
All functors stop --* 3; which invert a given set of ntaps of A (F converts 

A 4 A 5 A’ to an equalizer * (F:u is invertible). 

All functors d:P -+S,which identifv certain maps in the same horn sets 

(Fconverts A F A’ 5 A’ to an equalizer * Fx = Fy). Thus we can choose 
ali functors which ntake certain diagrams comntute. 

More details on this subject may be found in the recent paper of Gabriel and 
Unter [ 31. 

Proof. Let p : 8 -I, A be a cocone in C where 63 : I 3 A is a diagram in A. We want to 

show that 

R@ : R@‘f3 -+ R@+3 

is a coiintit diagram in !$Op. Let A E S$“, then the result t’di<>ws from the following 
sequence of natural bijections: 

cocones h : R cYC3 + 
-- ^. -.. _ _-_ _- __ . . I. 
I-indexed compatible 
._--.._. _ . . .-_ 

I-indexed corn pat ible 
___.__.__.,“.. .__“,_._.._____. _.._ 
I-indexed compatible 
-... -- . . ., _ . _. . ,a-_ 

IEl@ACHnS 
B_--.-. .__. .^_. 
EM inS 
-.-I- 

-____L( 

RCYd + A in tic”. 
.I _,--_ __ I .__ _. .- 

A in S$” 
--_ ..- 

-Gntihi (A, : !QYtN -b fu in 9~“” 
. . ______- . _ - ..L__ -.- _-_ -__.. I_- 

VfGGi~s {XI : YW -+ A\) in SA”’ 
___-__. _?_-. .-... __.-- ..-. P____ 
families <r, E AM) in S 
I_I___--.----- 

Theorem 5.2. Let @ : I *A and JI : J 3 A be diagrams in A. Tken lim F<f, 2 iim I‘9 
for every category B cod every C-functor r : A + B if and ml’ if R-)Cro( -. , a,” 
“Rp&-, ‘t). 
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Proof. Assume that Rc~&-, @) 2 Rcq&--, J/) and let r : A + B be a C-functor. 
First we show that there exists a functor t’ making the following diagram com- 

mute: 

Since J${’ is a full subcategory of sA“p. it is sufficient to see that the values of 
S!*“P l Y’lie in $fCo”. 

S”“‘* l’(B) = {r- -, 8) and since r sends cocones in C to colirnit diagrams in B and 
(. , B) transforms colimits in B to limits in S, (r-. B) is in L?$? and the existence of 
&’ follows. 

Let R : SB”p --* B, F : sA“p + B, and (7 : ,I?“’ -a\ 
F 

B be the partially defrned left 
adjoints of Y, .VOp*Y = i@‘, and tJ, respective y. By Proposition 3.1. 
titn r9, zz R no(-.I’+) which is 2 R I? Q(--$) by Theorem 2.7. By Proposition 
z I, R i‘! rr&.-9) 2 F n&-+) which by using Proposition 1. I again is zz 
(;;R~O( _ $1. Similarly, 19 r-w z GRp&-,q). Therefore lim V-b 2 lim IV. 

Conversely + ‘assume that lim IW 2 
that , except for the fat t thaT9cW is 

lim r* for all C_funct*G r. LAXI& 5.1 SOYS 

ngt necessarily small, A s S4“p % Sf” is a 
C’-functor. Let B be the full subcategory ofpCQp determined by the objects 
Rpf . a), Rpo(--, 4$and&&-,A)foreveryAEM.andlet T’:A +Bbe 
Rck’ with restricted codomain. Then T’ is a C-functor. 

I$ RcY@ 2 RC 121 Y@ 14 Rcq-&-, ‘P) by Theorem 2.1, and similarly 
l&r R@W ‘*- Rpn(-. 9). Therefore, 1% rcf, 2 Rc~,(--~ a) and l@ iW 2 
R~n,f --, \ir). Since I‘ is a C-functcsr. we conclude that RCQ( -, 4Bj - Rcno( , q). 

LPt us say that a diagram a : I * A has a C-abs~fuft, cdimit if there is a cocune 
in A * p : @ + A such that for every C-functor r : A -a B, rp : I‘@ -* I2 is a colimit 
diagram in B. 

This terminolqy may be slightly misleading if C does not consist of calimit dia- 
grams. In that case, a C-absolute colimit is not necessarily a cohtnit in A. If, how= 
ever, 13 consists entirely of colimit diagratns (this is usually the case), then the iden- 
tity A : A -+ A is a C-functor and therefore a C-absolute colimit is indeed a colimit 
in A. 

Roof. Let A : I + A be the diagram with value A. For every C-functor r, 19 rA ’ 
= I’A . Therefore 3r has a C-absolute colimite A if and only if I$ r4) % I$ PA for every 
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C-funcfor r. Theorem 5.2 says that this is equivalent to the condition Kclr&. a) 
-R@-.A). 

More precisely. if p : CD -+ A is a cocone then it is a C-absolute colirnit if and only 
if Rp&. p) : Rpo( -, +) -+ Rc(--, A ) is an istimsrphism. 

If C consists entirely elf colimit diagrams, then (---, A) sends these colimits to limits 
in S, SO R&--, A ) z (--, A). In this case, Corollary 5.3 can be restated as f&ows. 

A functor @ : I 
lim I’* : l$m r. --b 
Corollary 5.49 is 

Proof. Clearly. 1 % R@, and by Proposition 2.5, I “c n+, A). Thus Rpo( -1 @)‘ 1 
if and only if Rcq+-, a) - Rcq,( -.e, .49 and the result is immediate by Theo- 
rem 5.2. 

Corollary 5.6. A ttafrrrul trms~~mt~uti~~t~ R pro< -. , CD) --+ R cno( -- , *) is ail cpitttorphisrtt 
in SAP if id on@ if-for t3wy C.+tcW r 
exd, Hat ~anonicul map l&t Pb 

: A, + 3 fiw which lim ‘r’a md I$ I’\lr 
--) iim 1‘3/ is UN epitnt~rphism itt z -+ 

The preceding results suggest that we cansider I@ I’@ for ali C-functors as stalks 
for the functar IrO(--, a). This point of view has been used in certain computations 
invulvirrg RC which dlo not appear in this paper. However, we have nut systematically 
investigated this aspec! af the theory presented here. 

We end this section with some results on weak colimits analogous to those at the 
end of Set tion 3. 

Proposition 5.7. EVWJJ weuk dimit of I’@ is a weuk ctditnit of 1‘9 $or all C-fimc‘tors 
r : A -+ B if arid onl~~ ij’R~q-$--, e) is a retract oj’Rp(,( . a). 

CotdIary 5.8. <p : I --* A is weukl” C-fitlal if arti ntdy if there c.xists u rrattrral trmtsfi)r- 
mutim t 4 R p&-, a). 



38 R. Part? Connected compwte~tts and cohnits 

Carolla~ 5.9. Assume that 6 cmsists of c&nit diagrams. Then ld, : I + A has a 
C-absolute weak c&nit if ajld crnl_r? if Rcno(--, a) is a retract of a represmtable. 

6. E xanrples 

In general, the reflector RC is difficult to describe explicitly. In this section. WC 
develop some theory which gives us sufficient conditions and then show that in the 
case where C is obtained by considering all finite coproducts. the* conditions are 
also necessary. We investigate this situation in more detail. 

Let I be a category and Pa set of diagrams in 1. We want to add the calimits of 
the diaqams in p 13 I in a free manner. This we do as follows: 

Let I be the full subcategory ofSI*Pwhose objects are the representables and 
the functors of the formsno( -. . D) for every D E p. The Yoneda func tor gives us a 
full embedding N : I-+ i . 

II has the following characteristic properties: 
(i). For every D E 0, MD has a colimit in r. 
(ii). Every fuktor rls : I* A such that (tan has a colimit in A for every D E 0, 

extends tu a functor 6 : I” 
DE9and?$f*@. 

--* A such that 6 preserves the colimit of HD for every 

(iii). If 43 : I” -+ A is any functor, then a natural transformation @ : ct, 3 e/f ex- 
tends uniqwl) to a natural transformation $ : & -43 such that z/f = 0. 

In particular, condition (iii) implies that the & of (ii) is unique up to isomorph- 
ism. 

Proof. Let r iA + 8 be a C-functor. Then I% preservzs the colimit of HD for every 
Ds D.a_nd PWf % I% Sinw the extension of I% to I is unique up to isomorphisrn, 
P@ % PD. If B E 1 Bl, then we have the following scyrlence of natural bijections 

coconcs 6 + B -- 
cocones 1% -+ B _---I--u 
cocanes PB + 6). 

Therefore ~~JII I”+ ZE I$ r$ for every C-functor I‘, and by Theorem 5.2 this completes 
the proof 

Let 9 : J -+A be another diagram and let E be a set of diagrams in J such that for 
each E f E, 3rk” has a colimit in A and the cocone thus obtained is in C. If J” denotes 
the E-cocompletion of J in the sense just described and $ the extension of JI to j, 

then we have the following consequence of Theorem 6.1. 



39 

Corollary 6.3. rf’ T~,( ..- _ ($1 is wpreser~tahle, then @ has a C-absdute crrlimit. 

Corollary 6.4. If I+)( -, $1 2 1, therz @ is Gjkl. 

hoposition 6S. lx? I hwe all finite copruducts and let 9, : I + A presmw them. 
7kvt Q( .... , @) : rl --* LSW presenres all finite copmducts whkh exist in A . 

hoof. Let 1i~I~ bc a finite coproduct in A. The canonical map z~(L_IJQ, +) -+ IlrrO(Ai.S) 
sends [l.l,$ %‘W] to ( [Ai% W] ). It is easily checked that t 

h 
map 

Iln~~fAi. 4~) 3 n~~(I_L4~. Ct) which sends ([Ai* Sr,]> to [i_L4~---fQ~LIW~ % +(LUi)] is 
the inverse of the canonical map, as long as it is well defined, and this uses the finite- 
ness of the Goproduct. 

For the remainder of the paper, we will assume that A has finite soproducts, and 
FCp will denote the set of cocones in A obtained from these coproducts. 

Proof. By Theorem 6. i , R FQ Q(---, ‘b) Y R FC ntl( --,6 j . Since a finite copro- 
duct of finite coeroducts is again a finite copro b” uc?, the completion J has all finite 
coproducts ani CD preserves them. Thus it follows from Proposition 6.5 that 

QQ-J not. -* a) 1- no{---, $1, and the result follows. 

Corollary 6.7. cls has aft FCp-absolute coJrnit if and only if tro( -“. 5) is reprtwntable. 
and <t, is FCp-jhd if and wdj if no( --, Q) = 1 . 

Corollary 6.8. J, has a FC p-abwl~te ct.&nit if and only if 6 has an absolute cdirnit, 
iznd 4, is FCp-firnal if and only if * is jZna1. 

I” can be described more explicitly. An object of r” is a finite (and possibly empty) 
sequence of objects of 1. A morphism (It, ._., iM) + (I;, . . . . IL) consists of a function 
f : ( I, 2, . . . . n} + ( I, 2, . . . . nt) and for each i = I, 2, . . . . rt, a morphism ai : /i --, &,. 
The functor N sends an objzct I to the seqEnce of length one (I). Coproducts are 
formed by concatenation. CD is defined by @(It, . . . . I,,) =I&b(l,). 

By using Corollary 6,8 and the characterization of [ 121 (given in the remark fol- 
lowing Corollary 3.3), we obtain the following characterization for fCp-absolute 
colimits. 



:\ 
:’ 
!t 
(#)I _I_ _._ .-_- ._I_ ---Lp, 

T 

g(/n j) 
l 

QPI =---__ ._-__= -__I _- _-_, (#p,l 

commutes, where the horironrQ/ arrows represent murphisms of A aad inhere the 
tvrtit*ul N.WWS CM the right represent ,norphisms of the form 

f~)r some fun~titl~ f of the in&es. 

Example 6.10. As A + A ia’Bi 
iNi 

-- B is an FCp-absolute coequalizer which is not 

preserved by all functors. 

Exampk6.11. Ifh : S+D, f: A -+C+P,g : A 

Au3 
if.~fljzj 

A+h 
I 

c+s 

I 
C+h 

A+D------ 
Qq, in j, 1 

C+D 

is an FCp-absolute pushout which is not preserved by aI1 t‘unctors. This example is 
due to Volger [ t 5). 
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