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Introduction

Classically, one derives topology from analytic structures as follows.

inner product

��

norm

��

metric // //

��

effort

��

uniformity // //

��

quasi-uniformity

��

completely regular topology // // topology

(One need not start all the way at the top.)
But, when working constructively, it seems better to impose analytic structures on a pre-existing topology;

indeed, it seems to me that, before imposing an analytic structure, one should pre-suppose not merely a
topology, but all of the intermediate analytic structures, so that each of the arrows above simply forgets
structure.

In particular, we intend to replace the notion of effort space with the notion of effort (quasi-uniform)
locale—i.e., a locale (=constructively appropriate notion of topology) with an added quasi-uniform structure,
and (then) an added effort structure. To the best of my knowledge, this has not been attempted except in
the symmetric case (metrics and uniformities). The “update” comprises reconciling my previous work with
the symmetric case.

Review

Effort spaces and entourages (old)

By an effort space, I mean a “generalised metric space in the sense of Lawvere”—i.e., a (([0,∞],≥),+, 0)-
enriched category—i.e., a set E together with a map ϕ:E × E → [0,∞] satisfying

0 ≥ ϕ(σ, σ)

ϕ(π, σ) + ϕ(σ, τ) ≥ ϕ(π, τ)

for all π, σ, τ :E.
[Elements of E should be thought of as “states”, rather than “points”; ϕ(σ, τ) represents the effort which

would be required to transition from state σ to state τ—note the use of subjunctive mood; ϕ(σ, τ) = ∞
represents the idea that it is impossible to transition from state σ to state τ (there is no such thing as an
infinite amount of effort); note that it is reasonable that ϕ(σ, τ) 6= ϕ(τ, σ) in general; in particular, the
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situation ϕ(σ, τ) = ∞ 6= ϕ(τ, σ) is especially reasonable—some changes of state are irreversible; similarly,
it is possible that ϕ(σ, τ) = 0 6= ϕ(τ, σ); an effort space is skeletal if “ϕ(σ, τ) = 0 and ϕ(τ, σ) = 0” implies
σ = τ ; we do not insist that effort spaces be skeletal, though it would not be entirely unreasonable to do so.]

Given an effort space (E,ϕ), and a positive rational ε, a set of the form

Nε = ϕ�[0, ε) = {(σ, τ) : E × E | ϕ(σ, τ) < ε}

is called a basic entourage; an entourage is any N ⊆ E × E which contains a basic entourage.
The set E together with the collection of all entourages N ⊆ E × E is an example of a quasi-uniform

space, according to the Bourbaki definition—indeed, the motivating example. A map ω:E → F is called
uniformly continuous if (ω × ω)� preserves entourages.

As discussed in the summer, a quasi-uniformity on E induces more than one underlying topology on E,
but we prioritise what I call the welling topology, which is generated by vertical slices of entourages. [In
the case of the quasi-uniformity generated by an effort, the vertical slices of Nε are the basic open wells
Wσ,ε = {τ :E | ϕ(σ, τ) < ε}—as opposed to the sinks Sτ,ε = {σ:E | ϕ(σ, τ) < ε}, which are the horizontal
slices of Nε. For an arbitrary quasi-uniformity, we define the sinking topology to be that generated by the
horizontal slices of entourages—equivalently, the welling topology associated to the opposite quasi-uniformity.
The least common refinement of the welling and sinking topologies is called the regular topology. A uniformly
continuous map is continuous wrt all three of these topologies.]

Locales (very old)

A complete Heyting algebra (cha) is a complete lattice which (when regarded as a category) is cartesian
closed; equivalently, it is a complete lattice satisfying the following distributivity law.

α ∧
∨

k

βk =
∨

k

α ∧ βk

[The right adjoint of α ∧ − is denoted α ⇒ −; ¬α abbreviates α ⇒ ⊥. If ℓ is a cha, ∧ defines a sup-
homomorphism ℓ ? ℓ → ℓ; ⇒ defines a sup-homomorphism ℓ ? ℓop → ℓop; ¬ defines a sup-homomorphism
ℓ → ℓop; ⊤ defines a sup-homomorphism L → ℓ. (Here ? denotes the tensor product of complete lattices
in the category of complete lattices and sup-homomorphisms, and L denotes its unit, which is the complete
lattice of “truth-values”.) A cha is called boolean if ¬ is invertible.]

A frame homomorphism is a map between chas that preserves finite meets and arbitrary joins. If E is
a topological space, then its open subsets form a cha which we denote O(E); if ω:E → F is a continuous
map, then its inverse image defines a frame homomorphism ω�:O(F ) → O(E).

We define the category of locales and continuous maps to be the opposite of the category of chas
and frame homomorphisms. Nevertheless, it is notationally convenient to pretend that a locale is not the
same thing as a cha, but rather a kind of topological object; thus, if E is a locale, O(E) denotes the
“corresponding cha”, which is to say, itself, now regarded as a cha. Similarly, if ω:E → F is a continuous
map, then ω�:O(F ) → O(E) denotes the “corresponding frame homomorphism”.

The (cartesian) product of locales is defined by

O(E × F ) = O(E) ? O(F )

(this does have the correct universal property), and the terminal locale is defined by O(1) = L.
[More generally, for any set E, the powerset P(E) = LE is a cha; so there is a discrete locale Ed with

O(Ed) = P(E); moreover, a continuous map Ed → Fd is the same thing as a map E → F ; so in future we
shall elide the distinction between the set E and the discrete locale Ed.]

Open locales (very old)

A continuous map of locales ω:E → F is called open if ω�:O(F ) → O(E) has a left adjoint ∃ω:O(E) → O(F )
satisfying one of the three equivalent conditions below.

∃ω(α) ⇒ γ = ∀ω(α ⇒ ω�(γ))
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∃ω(α) ∧ β = ∃ω(α ∧ ω�(β))

ω�(β ⇒ γ) = ω�(β) ⇒ ω�(γ)

(Here α:O(E) and β, γ:O(F ).)
An open locale is a locale E such that the unique continuous map !:E → 1 is open. Classically, every

locale is open because, in that case,

∃!(ω) = “ω is non-empty” =

{

⊥ if ω = ⊥
⊤ otherwise

does the trick.
In an arbitrary topos, we can define a similar-looking map x⊥y:O(E) → Lop, satisfying

x⊥y(ω) = ⊥Lop = ⊤L ⇐⇒ ω = ⊥

for all ω:O(E). If E is open, then the diagram

O(E)
∃!

//

x⊥y
%%
K

K

K

K

K

K

K

K

K

K

L

¬
��

(∗)

Lop

holds. (But ¬ is not invertible, in general.)
We can define the word positive in such a way that the truth-value of the statement “ω is positive” equals

∃!(ω). Then the diagram (∗) asserts that

“ω is empty” iff “ω is non-positive”

from which we deduce
“ω is non-empty” iff “ω is non-non-positive”.

Entourages revisited (partly new)

For any open locale E, the composite

O(E) ? O(E)
∧

// O(E)
∃!

// L

(which we denote γE) makes O(E) into a Hermitian complete lattice (i.e., a Hermitian object in (Sup,?,L));
we say that E is quasi-discrete if γE ’s transpose

O(E) // O(E) −◦ L

is invertible—i.e., if (O(E), γE) is weakly definite as a Hermitian object of (Sup,?,L). (−◦ denotes the closed
structure of Sup.)

Classically, a locale E is quasi-discrete iff O(E) is boolean. This is because, in general, (∗) entails

O(E) //

¬
��

O(E) −◦ L

id −◦ ¬
��

O(E)op
∼

O(E) −◦ (Lop)

and classical logic means that the right-hand arrow is invertible; so, in this case, the top arrow is invertible
iff the left-hand arrow is.

3



But constructively, every discrete locale is quasi-discrete—hence the name! More generally, for any
complete lattice ℓ, the transpose of

P(E) ? P(E) ? ℓ
γ ? id

// L ? ℓ
∼

// ℓ

as an arrow P(E) ? ℓ → P(E) −◦ ℓ is invertible. (Unless I’m much mistaken, this fact is also connected
to the constructive complete distributivity of P(E), so we should not expect it to generalise to arbitrary
quasi-discrete locales.)

In particular, if ℓ = P(F ), we get an isomorphism

P(E × F ) ∼= P(E) ? P(F ) ∼= P(E) −◦ P(F )

which should come as no surprise: the comparison functor Rel → Sup is fully faithful, and what we have here
turns out to be the action of that functor on hom-sets.

All this is a convoluted way of introducing the notion that an entourage can—and perhaps should—be
regarded, not as a “static” subset of E × E, but as a “dynamic” operation on subsets of E. In the case of
an effort space (E,ϕ), we write Φε:P(E) → P(E) for the operation corresponding to Nε ⊆ E × E. Then

Φε(A) = {τ :E | ∃σ:E.ϕ(σ, τ) < ε}

so, in particular, Φε({σ}) =Wσ,ε.

Effort locales (old)

A simple effort locale is a locale E together with an order-preserving map Φ:Q+ → O(E) −◦ O(E) satisfying
the following axioms.

ω ≤ Φε(ω)

Φε(Φζ(ω)) ≤ Φε+ζ(ω)

Φη(ω) ≤
∨

ζ<η

Φζ(ω)

[The first two axioms correspond directly to the two axioms of an effort space; the third is a technical
requirement that, for instance, guarantees, in the case E is discrete, that

{ε:Q+ | τ ∈ Φε({σ})}

is an upper cut—in which case, we recover ϕ(σ, τ) as the infimum of that set.]
The underlying quasi-uniformity of a simple effort locale is the upward closure of the range of Φ.

Q(E) = {ψ:O(E) −◦ O(E) | ∃ε:Q+.Φε ≤ ψ}

[A simple quasi-uniform locale should mean a locale E together with a Q(E) ⊆ O(E) −◦ O(E) satisfying
various axioms. A simple effort locale can then be regarded as a simple quasi-uniform locale together with
a cofinal map Φ:Q+ → Q(E) satisfying further axioms.]

In the summer we showed that much of the usual theory of effort spaces generalises to simple effort
locales. In particular, given a simple effort locale, one can easily define a Kuratowski interior operator on
O(E) corresponding to the welling topology—in this way, we obtain a new locale Ew with O(Ew) ⊆ O(E);
moreover, each Φε restricts to a sup-homomorphism Φ̃ε:O(Ew) → O(Ew). (Hence, (Ew, Φ̃) is again a simple
effort locale; we call (E,Φ) tight if E = Ew—i.e., if the Kuratowski interior operator equals the identity.)
Similarly, given a simple effort locale, we can define an appropriate notion of uniform cover.
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Update

Symmetry

Given a simple effort locale (E,Φ), it is not clear whether one can define an “opposite” effort locale (E,Ψ).
Indeed, let (E, φ) be an effort space such that the welling topology is distinct from the sinking topology;

then it is not clear that φop should restrict to Ew. (In other words, it is not clear that there should exist a Ψ,
such that (Ew,Ψ) is the opposite of (Ew, Φ̃). It is also far from clear—indeed we expect it to be untrue—that
every effort locale arises as (Ew, Φ̃) where E is discrete.)

The solution comes from the general theory of Hermitian objects in a closed involutive monoidal category
(V ,�, ( ), I) with pullbacks: given Hermitian objects (H, γ:H �H → I) and (K,κ:K �K → I), consider
the pullback below.

Adjt(H, γ;K,κ) //

��

K ◦− H

��

(K −◦ I) ◦− H

∼
��

H ◦− K
∼

// K −◦ H // K −◦ (I ◦− H)

If (H, γ) is weakly definite—i.e., if the arrow H → I ◦− H is invertible—then Adjt(H, γ;K,κ) ∼= K ◦− H ; on
the other hand, if (K,κ) is weakly definite, then K → K −◦ I is also invertible, and hence Adjt(H, γ;K,κ) ∼=
H ◦− K. So if both (H, γ) and (K,κ) are weakly definite, we obtain an isomorphism

H ◦− K
∼

// Adjt(H, γ;K,κ)
∼

// K ◦− H

—which is the usual dagger operation on the category of weakly definite Hermitian objects.
But if neither (H, γ) nor (K,κ) are weakly definite, Adjt(H, γ;K,κ) yields a good notion of “adjoint pair

of maps” between (H, γ) and (K,κ). (Indeed, if the ambient category is symmetric, then a Hermitian object
is a species of Chu space, and Adjt(H, γ;K,κ)(H, γ;K,κ) is part of the definition of the internal hom of Chu
spaces.) In particular, we can derive a dagger operation

Adjt(K,κ;H, γ) → Adjt(H, γ;K,κ)

which flips the two components of the pullback.
We therefore define an adjointable effort locale to be an open locale E together with an order-preserving

map Φ:Q+ → Adjt(O(E), γE ;O(E), γE) such that composition with either of the two projections to O(E) −◦
O(E) results in a simple effort locale.

The opposite of an adjointable effort locale (E,Φ) is defined by composing Φ with the dagger operation on
Adjt(O(E), γE ;O(E), γE). A symmetric effort locale is then an adjointable effort locale equal to its opposite.
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