
PROTEAN GRAPHS

TOMASZ ÃLUCZAK AND PAWEÃL PRAÃLAT

Abstract. We propose a new random model of the web graphs
in which the degree of a vertex depends on its age. We characterize
the degree sequence of this model and study its behaviour near the
connectivity threshold.

Proteus: Weltweise Kniffe sind dir noch bewußt.
Thales: Gestalt zu wechseln, bleibt noch deine Lust.

Johann Wolfgang von Goethe “Faust”

1. Introduction

One of the most characteristic features of the internet graph, which
corresponds to internet web connections (or more generally, of the so-
called web graphs), is its degree sequence, in which the fraction of
vertices of degree larger than k decreases as a power of k. Since in
the standard models of sparse random graphs the fraction of vertices
of large degree decreases exponentially with k, a number of new prob-
abilistic models of web graphs for which degree sequence obeys the
power law have been proposed (see, for instance, [1, 2, 5, 7]). In this
note we introduce yet another random graph model in which the shape
of degree sequence is controlled by some additional parameters. The
formal definition of the model, given in the next section, is somewhat
technical, but the idea behind is simple and natural. We start with
any graph G on n vertices, and in each step we pick randomly one
of the vertices v to be ‘renewed’. Thus, we delete from G all edges
incident to v (this corresponds to a removal of a random node from
the network). Then we generate new edges incident to v according
to some prescribed distribution X = Xn−1 (which can be viewed as a
‘new’ node which establishes connections with some nodes in the net-
work). We allow the probability that v is joined to w to depend on the
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‘age’ of w, i.e. the last time the vertex w had been ‘renewed’ (it seems
natural to assume that ‘older’ nodes are more attractive for newcom-
ers). Let Pk(X) = Pk(G;X) denote the graph obtained by applying
this procedure k times. Note that if by the times k1, k2 each vertex
of a graph G is renewed at least once, the random graphs Pk1(G;X),
Pk2(G;X) are identical random objects whose properties does not de-
pend on the graph G we started with, but only on the distribution X
with which we generate edges incident to a renewed vertex. We call
the graph generated in this process a protean graph and denote it by
P(X).

Note that, unlike in most of theoretical models of the internet graph,
the number of vertices of the protean graph is large but fixed and does
not grow during the protean process. One may view it as a weakness
of our approach since the internet graph is, at least at this moment,
rapidly expanding. Let us however point out a few features of protean
graphs which, in our opinion, make this model interesting. They gener-
alize some standard models of random graphs (as G(n, p)) but could be
also used to imitate real networks as web graphs or, after some modifi-
cations, peer-to-peer networks (see a remark in the following section).
This is, of course, done by an appropriate selection of the distribution
X; for a particularly natural choice of X the degree sequence of P(X)
is studied in Section 4. Our model takes into account an additional pa-
rameter of a vertex: its ‘age’, and predicts how it influences the degree
of a vertex. Moreover, it seems that protean graphs are interesting not
only as models of the web graphs, but they are also attractive from
a theoretical point of view: they have a very rich dependence struc-
ture, and, unlike many other models of random graphs, P(X) can be
viewed as the stationary distribution of the protean process {Pk(X)}k.
In order to show similarities and differences between the behaviour of
protean graphs and other random graph models, in the last part of
the note we study how the threshold of connectivity is affected by the
dependence structure of the protean graph, and characterize the limit
distribution of the ‘recovery time’ for connectivity near the connectivity
threshold.

Finally, let us mention that most of the arguments we used in this
note are fairly long and technical. Thus, we often omit details of the
proofs which can be easily filled in by the reader (a much more elaborate
treatment of the subject can be found in the second author’s Ph.D.
dissertation [9]).
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2. Definition

Let Xn−1 = (X1, . . . , Xn−1) be an (n− 1)-dimensional non-negative
integer-valued random variable, G be a graph with vertex set [n] =
{1, 2, . . . , n}, and σ : [n] → [n] denote a permutation of [n]. Consider
a Markov chain {(G̃k, σ̃k, Ak)}∞k=0 whose stages are triples (G̃k, σ̃k, Ak),

where G̃k is a (multi)graph with vertex set [n], σ̃k : [n] → [n] is
a permutation of set [n], and Ak ⊆ [n]. The process starts with
(G̃0, σ̃0, A0) = (G, σ, ∅). In the kth step of the process, we choose a
random vertex i ∈ [n], and move i to the end of the permutation σ̃k−1,
i.e., we set

σ̃k(j) =





σ̃k−1(j) for σ̃k−1(j) < σ̃k−1(i)

σ̃k−1(j)− 1 for σ̃k−1(j) > σ̃k−1(i)

n for j = i .

Then, we remove all edges incident to i from G̃k−1 and generate ran-
domly new edges incident to it, so that the vector

(di(σ̃−1
k (1)), di(σ̃−1

k (2)), . . . , di(σ̃−1
k (n− 1))) ,

where di(σ̃−1
k (`)), ` = 1, 2, . . . , n− 1, counts the number of edges join-

ing i and vertex σ̃−1
k (`), is distributed with distribution Xn−1. Thus,

roughly speaking, to get G̃k we delete a random vertex, update edges
of the remaining vertices accordingly, add a new vertex n, and join it
to the other vertices according to the distribution Xn−1. Note that the
weight of a vertex v depends only on its position σ̃k(v) in permutation
σ̃k; we call σ̃k(v) the rank of v. Finally, we modify the set Ak of vertices
of G̃k which have been renewed so far, putting Ak = Ak−1 ∪ {i}.

Let

L = min{k : Ak = [n]} .

The protean process P(Xn−1) is defined as the Markov chain {(Gi, σi)}∞i=0

whose stages are pairs (Gi, σi), where Gi = G̃i+L and σi = σ̃i+L. Note
that the chain P(Xn−1) = {(Gi, σi)}∞i=0 is already in the stationary
distribution, i.e., the distribution determined by Gi on the set of all
ordered graphs with vertex set [n] is identical for all i ≥ 0. Further-
more, this distribution does not depend on the choice of G and σ. The
random graph corresponding to this distribution is a protean graph.
In order to make some of the notation below slightly easier, we shall
assume that the ranks of the vertices of the protean graph coincide
with their labels, i.e., we set

L̃ = min{i ≥ L : σ̃i is an identity},
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and identify the protean graph P(Xn−1) with GL̃.
Clearly, the behaviour of P(Xn−1) is largely affected by the distribu-

tions of Xn−1. Thus, for instance, if every coordinate of Xn−1 has the
binomial distribution B(1, p), then P(Xn−1) can be identified with a
standard random graph model G(n, p). Another simple distribution is
when a renewed vertex selects at random precisely d neighbours from
the remaining n − 1 vertices. This model is somewhat similar to the
models of peer-to-peer networks, where a new vertex is connected to
some number of cache vertices; in the case of peer-to-peer networks
however, one need to establish additional links to ensure that the net-
work is connected (see, for instance, [8]). Here we concentrate on cer-
tain multigraph variant of the above model which can be used to study
(undirected) web graphs.

Let n, d ∈ N and η ≥ 0. We shall consider only a special type
of protean (multi)graphs with vertex set [n], where in each step a new
vertex is choosing d times a neighbour among the existing vertices, and
in each of these d independent choices each vertex v is chosen with the
probability proportional to the rank of v raised to −η (e.g. we assume
that ‘old’ vertices of small ranks are more attractive to newcomers).
As we shortly see (Theorem 4.2), the distribution of degrees of vertices
in these graphs also obeys the power law, provided η ∈ (0, 1). In order
to make this definition precise, let for 1 ≤ s ≤ n− 1,

δs = (0, 0, ..., 0, 1, 0, ..., 0) ∈ Rn−1 (1 at the sth position),

Xη
n−1 and Xη,d

n−1 be a non-negative integer-valued random variables such
that

P(Xη
n−1 = δs) = s−η

/ n−1∑
i=1

i−η .

Furthermore, for d ∈ N, let Xη
n−1(i), i = 1, 2, . . . , d, denote independent

copies of Xη
n−1, and finally

Xη,d
n−1 =

d∑
i=1

Xη
n−1(i) .

Then, by Pn(d, η) we denote the protean graph P(Xη,d
n−1), while for the

protean process P(Xη,d
n−1) we write Pn(d, η) = {(P t

n(d, η), σt)}∞t=0.

3. Basic Lemma

In this section we introduce the main tool in dealing with protean
graphs: Lemma 3.5, which, roughly speaking, states that Pn(d, η)
is, in a way, related to a random graph on the set of vertices [n] =
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{1, 2, . . . , n}, in which a pair of vertices i, j, 1 ≤ i < j ≤ n, is adjacent
with probability (1− η) d

n
( j

i
)η, independently for each such pair.

Let ξ̃ = {ξi}0
i=−∞ denote a random sequence of integers, where ξi ∈

[n] and P(ξi = r) = 1/n for each i ≤ 0 and 1 ≤ r ≤ n (ξi’s correspond
to the labels of vertices as they are renewed during the process). For
i ∈ [n] and t ≤ 0, we define T (t, i) by setting

T (t, i) = max{j ≤ t : ξj = i};
if such j does not appear in {ξi}t

i=−∞ at all, which happens with prob-

ability 0, we put T (t, i) = −∞. Now let ξ̂ = {ξi}0
i=−∞ be a random

sequence obtained from ξ̃ by conditioning on the event that

−∞ < T (0, 1) < T (0, 2) < · · · < T (0, n) = 0 .

Let σ
(j)
n denote a permutation of the set [n] obtained from a uniform

random permutation by conditioning on the event that the elements

1, . . . , j appear in it in the correct order, and σ
(j)
n (j) = n, i.e., that

σ(j)
n (1) < σ(j)

n (2) < · · · < σ(j)
n (j) = n . (1)

Our further argument is based on the following elementary observation,
which states that at the moment when the jth vertex of Pn(d, η) is

renewed for the last time, the rank of vertex i has been given by σ
(j)
n (i).

Fact 3.1. Let j ∈ [n]. Define a permutation σ̄j setting σ̄j(i) = k,
whenever the kth smallest element in the sequence

T (T (0, j), 1), T (T (0, j), 2), . . . , T (T (0, j), n) ,

is equal to T (T (0, j), i). Then, σ̄j has the same distribution as the

random permutation σ
(j)
n . ¤

Let us start with the distribution of the random variable σ
(j)
n (i).

Fact 3.2. For 1 ≤ i < j ≤ n, and i ≤ k ≤ n− j + i we have

P(σ(j)
n (i) = k) =

(
k−1
i−1

)(
n−k−1
j−i−1

)
(

n−1
j−1

) . (2)

In particular, Eσ
(j)
n (i) = in/j.

Proof. The number of permutations σ : [n] → [n] for which (1) holds
is equal to

(
n−1
j−1

)
(n− j)!; among them there are

(
k−1
i−1

) (
n−k−1
j−i−1

)
(n− j)!

for which we have σ(i) = k. Hence (2) holds, and

Eσ(j)
n (i) =

∑

k

k

(
k−1
i−1

)(
n−k−1
j−i−1

)
(

n−1
j−1

) =
in

j

∑

k

(
k
i

)(
n−k−1
j−i−1

)
(

n
j

) =
in

j
.
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The last equation follows from the fact that
(

k
i

)(
n−k−1
j−i−1

)
/
(

n
j

)
is a hyper-

geometric probability function, so the very last sum is equal to one. ¤

It turns out that the random variable σ
(j)
n (i) is sharply concentrated

around its mean.

Fact 3.3. Let 0 < ε < 1/4, 1 ≤ i < j ≤ n, and

k±ε =
in

j
(1± ε) .

Then,

P(σ(j)
n (i) ≤ k−ε ) ≤ 3i exp

(
− ε2i

4

)
,

and

P(σ(j)
n (i) ≥ k+

ε ) ≤ 2j exp
(
− ε2i

12

)
.

Proof. Note that

P(σ(j)
n (i) = k) =

(
k−1
i−1

)(
n−k−1
j−i−1

)
(

n−1
j−1

) =
i(j − i)n

jk(n− k)

(
k
i

)(
n−k
j−i

)
(

n
j

) .

Thus, one can estimate the above probability by applying a well known
bounds for the tails of the hypergeometric distribution (see, for in-
stance, Theorem 2.10 in [6]). Since the calculations are standard, we
omit the technical details. ¤

Now let us consider a generalization of a well known ‘balls into bins’
model, which will be useful to prove Lemma 3.5. Suppose that we
sequentially put d balls into m bins by placing each ball into a bin
independently and the probability that we choose a bin k, 1 ≤ k ≤ m,
is equal to ρk, where

∑m
i=1 ρk = 1. Let S1, S2 ⊆ [m], S1 ∩ S2 = ∅,

|S1| ≤ d, and let p(S1, S2) denote the probability that every bin from
set S1 has at least one ball and bins from set S2 have no balls.

Fact 3.4. Using notations as above we have

p(S1, S2) ≥ (1−
∑

j∈S1∪S2

ρj)
d−|S1|d(d− 1) . . . (d− |S1|+ 1)

∏
i∈S1

ρi ,

and

p(S1, S2) ≤ (1−
∑
j∈S2

ρj)
d−|S1|d(d− 1) . . . (d− |S1|+ 1)

∏
i∈S1

ρi .

Proof. In the first inequality we estimate p(S1, S2) by the probability
that each bin from S1 contains precisely one ball; in the second we
count some configurations more than once. ¤
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Now we state the main result of this section, Lemma 3.5. Although
its precise formulation is rather technical, the lemma is a straightfor-
ward consequence of the definition of Pn(d, η) and the large deviation
inequalities stated in Fact 3.3.

Let 0 < η < 1, d ∈ N, and let

E1, E2 ⊆ {{i, j} : log3 n < i < j ≤ n}, E1 ∩ E2 = ∅ .

For every i, j ∈ [n], r = 1, 2, let

Vr(j) = {i : i < j and {i, j} ∈ Er} ,

w(i, j) = (1− η)
1

n

(j

i

)η

=
(
1 + O

(
nη−1

)) (in/j)−η

∑n
s=1 s−η

,

and
wr(j) =

∑

i∈Vr(j)

w(i, j) .

Then the following holds.

Lemma 3.5. Let 0 < η < 1, d, E1, E2, V1(j), w(i, j), w1(j) and w2(j)
be defined as above, and let |V1(j)| ≤ d for every j ∈ [n].

Let Pn(E1, E2, d, η) denote the probability that all pairs from E1 are
edges of Pn(d, η), and no pair from E2 is an edge of Pn(d, η). Then,

Pn(E1, E2, d,η) ≤ o(exp(− log3/2 n))

+
n∏

j=1

[1− (1 + O(log−1/2 n))w2(j)]
d−|V1(j)|

× d(d− 1) . . . (d− |V1(j)|+ 1)
∏

i∈V1(j)

(1 + O(log−1/2 n))w(i, j),

and

Pn(E1, E2, d,η) ≥ o(exp(− log3/2 n))

+
n∏

j=1

[1− (1 + O(log−1/2 n))(w1(j) + w2(j))]
d−|V1(j)|

× d(d− 1) . . . (d− |V1(j)|+ 1)
∏

i∈V1(j)

(1 + O(log−1/2 n))w(i, j).

Proof. As we have already mentioned Lemma 3.5 is a simple conse-
quence of Fact 3.1, Fact 3.3 and Fact 3.4. Indeed, Fact 3.1 says
that at the moment when vertex j is renewed for the last time, the
rank of vertex i has the same distribution as the random variable
σ

(j)
n (i). Let ε = log−1/2 n. Fact 3.3 implies that with probability

1 − o(exp(− log3/2 n)) for every i, j, log3 n ≤ i < j ≤ n, the rank
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of i at the moment when j is refreshed for the last time is contained
between k−ε and k+

ε . Now the assertion follows from Fact 3.4. ¤
An analogous result for η = 0 has a particularly simple form. Indeed,

in this case we have w(i, j) = 1/n for every 1 ≤ i < j ≤ n, and so we
do not need to invoke Fact 3.3.

Lemma 3.6. Let d, E1, E2, V1(j), V2(j), be defined as above, and let
|V1(j)| ≤ d for every j ∈ [n].

Let Pn(E1, E2, d, 0) denote the probability that all pairs from E1 are
edges of Pn(d, 0), and no pair from E2 is an edge of Pn(d, 0). Then,

Pn(E1, E2, d, 0) ≤
n∏

j=1

(1− |V2(j)|/n)d−|V1(j)|

× d(d− 1) . . . (d− |V1(j)|+ 1)n−|V1(j)|,

and

Pn(E1, E2, d, 0) ≥
n∏

j=1

(1− |V1(j)|/n− |V2(j)|/n)d−|V1(j)|

× d(d− 1) . . . (d− |V1(j)|+ 1)n−|V1(j)|. ¤

From the above lemmas it follows that the behaviour of the protean
graph Pn(d, η) is related to that of random graph with vertex set [n]
in which two vertices i, j, log3 n ≤ i < j ≤ n, are adjacent with
probability

p(i, j) = dw(i, j) = (1− η)
d

n

(j

i

)η

, (3)

independently for each such pair.
Indeed, if |V1(j)| = o(d) for every j ∈ [n], then Lemma 3.5 gives

Pn(E1, E2, d, η) ∼
n∏

j=1

(
1−

∑

i∈V2(j)

w(i, j)
)d

d|V1(j)| ∏

i∈V1(j)

w(i, j)

= (1 + o(1)) exp
(
−

∑

{i,j}∈E2

p(i, j)
) ∏

{i,j}∈E1

p(i, j) ,

whereas if we consider a graph with independent edges, the probability
that an analogous event holds is equal to

∏

{i,j}∈E2

(
1− p(i, j)

) ∏

{i,j}∈E1

p(i, j)

= (1 + o(1)) exp
(
−

∑

{i,j}∈E2

p(i, j)
) ∏

{i,j}∈E1

p(i, j) .



PROTEAN GRAPHS 9

Lemmas 3.5 and 3.6 state that the protean graph behaves just like
the graph in which two vertices i, j, i < j, are adjacent with probability
p(i, j), independently for each pair. We prove that for some properties
this is indeed the case. However, since we claim nothing about edges
between ‘small vertices’ i, 1 ≤ i < log3 n, we cannot show a general
theorem which relates, say, monotone properties of our model with
the one with independent edges (as it is done, for instance, in Chung
and Lu [4]). Nonetheless, our lemmas are strong enough to show that
any property of the independent model which, roughly speaking, does
not depend on the behaviour of the first log3 n vertices and can be
proved by computing moments holds also for the protean graph (see
Theorems 5.1 and 5.2 below). We also emphasize that, in our opinion, it
is its ‘dynamical behaviour’ (cf., Theorem 5.3) which makes the protean
graph model interesting.

4. Degrees of vertices

In this section we study the shape of degrees sequence of Pn(d, η).
Let us start with the following result on the expected degree of vertex i.

Theorem 4.1. Let 0 ≤ η < 1 and d = o
(
n(1−η)/2

)
. Then the expected

degree of a vertex i = i(n), log4 n ≤ i ≤ n is given by

Ed(i) = (1 + o(1))d
1− η

1 + η

((n

i

)η

+
2η

1− η

i

n

)
.

Proof. Let d<(i) and d>(i) denote the number of neighbours j of i
such that j < i and j > i respectively. We look first at the expec-
tation of d<(i). It is easy to see that in every moment of the process
any set of log3 n vertices has the total weight O(nη−1 log3 n), thus,
the expected number of neighbours of i among the first log3 n vertices
is o(1). Furthermore, from Fact 3.3 we infer that with probability

1− o(exp(− log3/2 n)), the total weight of all vertices j, log3 n ≤ j < i
is,

(1 + O(log−1/2 n))
i∑

j=log3 n

w(i, j) = (1 + O(log−1/2 n))i/n ,

so Ed<(i) = (1 + o(1))di/n + o(1).
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On the other hand, one can use Lemma 3.5 (see also the remark
made at the end of the previous section) to show that

Ed>(i) =
(
1 + o(1)

) n∑
j=i+1

p(i, j)

=
(
1 + o(1)

)
d(1− η)

(n

i

)η
∫ 1

i/n

xηdx

=
(
1 + o(1)

)
d
1− η

1 + η

((n

i

)η

− i

n

)
.

Since d(i) = d<(i) + d>(i), the assertion follows. ¤
Note that for η ∈ (0, 1) the above expectation is minimized for i =

(1 + o(1))cmin(η)n, where the constant

cmin(η) = [(1− η)/2]1/(η+1) ,

depends only on η but not on d. We comment on this fact in the follow-
ing section, devoted to the threshold for the connectivity for Pn(d, η).

Observe also that for small i, the expected degree of a vertex i is
dominated by the factor d 1−η

1+η

(
n
i

)η
. Consequently, the degrees of the

protean graph Pn(d, η), are distributed according to the power law.
More specifically, let Zk = Zk(n; d; η) denote the number of vertices of
degree k in Pn(d, η) and Z≥k =

∑
`≥k Z`. Here and below a.a.s. means

‘with probability tending to 1 as n →∞’.

Theorem 4.2. Let d ∈ N, 0 < η < 1, log2 n ≤ k = k(n) = O(nη/ log3 n),
and d = d(n) = o(log2 n). Then a.a.s.

Z≥k = (1 + o(1))n
(1− η

1 + η
· d

k

)1/η

+ O(log3 n) .

Proof. We just outline an argument, omitting technical details. Let
Yi,j, log3 n ≤ i < j ≤ n, be a family of independent random variables
such that

P(Yi,j = 1) = 1− P(Yi,j = 0) = p(i, j),

where p(i, j) is defined by (3). Then, from Lemma 3.5 it follows that the
probability that i has k neighbours among vertices j, with j > i, can be
well approximated by the probability that

∑
j>i Yi,j = k. One can use

this fact also to estimate tails of the distribution and show that large
deviation inequalities for

∑
j>i Yi,j imply that for every ε > 0 a.a.s. all

vertices i such that

i ≥ (1 + ε)n
(1− η

1 + η
· d

k

)1/η
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has fewer than k − d = (1 + o(1))k neighbours among vertices j > i,
and each vertex i for which

i ≤ (1− ε)n
(1− η

1 + η
· d

k

)1/η

has more than k neighbours. Since the vertex i has at most d = o(k)
neighbours j with j < i, the assertion follows. ¤

In a graph in which the number of vertices of degree k decreases
roughly as k−γ the fraction of vertices of degree at least k changes
roughly as ∑

`≥k

O(`−γ) = O(k1−γ) .

Thus, to imitate this distribution one should set the parameter η of the
protean graph Pn(d, η) to be equal η ∼ 1/(γ − 1). For the web graph
the distribution of total degrees is, at this moment, unknown. However,
the number of vertices of in-degree k decreases roughly as k−2.1, while
the fraction of vertices of out-degree k can be approximated by k−2.7

(cf., Broder et al. [3]). Thus, if the total degree of the graph is close
to the distribution of in-degree, then it can be approximated by the
protean graph with ηwww ∼ 0.91.

5. Connectivity

Theorem 4.2 shows that protean graphs can be treated as a (sta-
tionary) model of web graphs; some properties interesting for this type
of applications as the diameter and the size of the largest component
of Pn(d, η) will be treated in the forthcoming paper [10] (see also [9]).
In this section we study the connectivity of Pn(d, η) to illustrate sim-
ilarities and differences both in results and methods between protean
graphs and the standard binomial random graph model G(n, p).

Let ρn(d, η) denote the probability that Pn(d, η) is connected. First
we deal with the simplest case η = 0. Then, all vertices have the same
weight and the probability that two vertices are connected by an edge
is given by

p̄(i, j) = p̂(n) = 1− (1− 1/n)d = d/n + O(d2/n2) .

Thus, one should expect that the threshold function for connectivity is
the same as in the binomial random graph model G(n, p̂). Theorem 5.1
shows that it is roughly the case, but the dependence structure of
Pn(d, 0) influences the second term of the threshold function.
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Theorem 5.1. Let d = d(n) = log n − 1
2
log log n + a(n), a(n) =

o(log log n). Then

lim
n→∞

ρn(d, 0) =





1 if a(n) →∞
exp

(−
√

π/2e−a
)

if a(n) → a

0 if a(n) → −∞ .

Before we prove Theorem 5.1 let us remark that Lemma 3.6 (and
Lemma 3.5) are not strong enough to deduce Theorem 5.1 (and the
following Theorem 5.2) directly from the corresponding result for an
‘independent’ model. However, they are sufficient to compute all the
moments of an appropriate random variables so the proof for an ‘inde-
pendent’ model can be mimicked in this case.

Proof. Note first that for the expectation of the number Yn of isolated
vertices in Pn(d, 0) we have

n∑
i=1

(
1− i− 1

n

)d(
1− 1

n

)d(n−i)

= (1 + o(1))ne−d

∫ 1

0

exp
(
− x2d

2
+ O(x3d)

)
dx

= (1 + o(1))

√
π

2d
ne−d = (1 + o(1))

√
π

2
e−a .

One can also check that, for a given r ≥ 2, the rth factorial moment of
Yn tends to (π/2)r/2e−ra, so the Yn tends to a Poisson distribution and,
in particular, the probability that Pn(d, 0) contains no isolated vertices

tends to exp(−
√

π/2e−a) as n →∞.
Thus it is enough to show that if, say, d(n) > 0.99 log n, the protean

graph consists of one giant component and, perhaps, some number of
isolated vertices. The probability that Pn(d, 0) contains a component
of size k, where 2 ≤ k ≤ 2n/3, is, by Lemma 3.6 (see also the remark
made after this lemma), bounded from above by

2n/3∑

k=2

(
n

k

)
kk−2(1− d/n)(k−2k/

√
d)(n−k)(d/n)k−1 ,

and tends to 0 as n → ∞. (Since at most 2k/
√

d vertices from a

spanning tree have degree more than
√

d, we can estimate the prob-
ability that the vertices from a tree have no neighbours outside this

component by (1− d/n)(k−2k/
√

d)(n−k).) Thus, a.a.s. the protean graph
consists of a giant component and some number of isolated vertices,
which completes the proof of the theorem. ¤
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In the case η ∈ (0, 1) the threshold for the connectivity is affected
by a constant factor.

Theorem 5.2. Let η ∈ (0, 1) and d = d(n) = a log n, where a is a
positive constant. Then

lim
n→∞

ρn(d, η) =

{
1 if a > 1/g(x0(η))

0 if a < 1/g(x0(η)) ,

where

g(x) =
1− η

1 + η
(x−η − x)− log(1− x) , (4)

and x0 is the value of x which minimizes g(x) in the interval (0, 1),
i.e., x0 is the root of equation

(1− η)ηx−1−η + 1− η =
1 + η

1− x
. (5)

Proof. The proof basically follows the argument we use to show The-
orem 5.1. We find first the expectation of the number of Yn of the
isolated vertices in Pn(d, η). Using Lemma 3.5, and observing that the
probability that a vertex is connected to one of the first log3 n vertices
is negligible, we get

EYn = o(exp(− log3/2 n))

+
n∑

i=1

(
1− (1 + O(log−1/2 n))

i−1∑
j=1

1− η

n

( i

j

)η)d

×
n∏

j=i+1

[
1− (1 + O(log−1/2 n))(1− η)

d

n

(j

i

)η]

= (1 + o(1))n

∫ 1

0

[
(1− (1 + O(log−1/2 n))x)d

× exp
(
− (1 + o(1))

1− η

1 + η
(x−η − x)

)d]
dx

= n1+o(1)

∫ 1

0

exp
(− (1 + o(1)) g(x) d

)
dx .

(6)

It is not hard to check that g′′(x) > 0 for x ∈ (0, 1) and limx→0+ g′(x) =
−∞ while limx→1− g′(x) = ∞. Hence, g(x) has a unique minimum in
the point x0(η) which is the root of the equation (5).

If a < 1/g(x0(η)), then for some ε > 0 we have a < 1/g(x) for each
x ∈ (x0(η)− ε, x0(η) + ε). Consequently,

EYn ≥ 2εn1+o(1) exp
(−(1+o(1))a log n max

x∈(x0(η)−ε,x0(η)+ε)
{g(x)}) →∞ .
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One can use Lemma 3.5 to show that for such a we have VarYn =
o((EYn)2) so, if a < 1/g(x0(η)), then Pn(d, η) a.a.s. contains an isolated
vertex.

Now suppose that d(n) = a log n and a > 1/g(x0(η)) then

EYn ≤ n1+o(1) exp(−(1 + o(1))ag(x0) log n) = o(1) ,

and so a.a.s. Pn(d, η) contains no isolated vertices. Thus, in order to
show the assertion, we have to check that for some small δ > 0 and
d(n) > (1/g(x0(η))− δ) log n, the protean graph Pn(d, η) consists of a
giant component and, perhaps, some number of isolated vertices.

Let c be small positive constant to be chosen later, and let H denote
the subgraph of Pn(d, η) induced by vertices i, cn < i ≤ n. One can use
Lemma 3.5 to show that a.a.s. H consists of one large component and
o(n0.5) of isolated vertices. Again we just outline the proof, omitting

technical details. Estimating the number of isolated vertices Ŷn in H
the same way as EYn above, we infer that EŶn = o(n0.4), and so a.a.s.

Ŷn = o(n0.5) by Markov’s inequality. Using similar calculation as in (6),
one can show that the probability that a vertex i = dxne, c < x ≤ 1
from a spanning tree have no neighbours outside this component of a
fixed size which belong to the subgraph H is equal to

(1 + o(1))
(
1− (1 + O(log−1/2 n))

i−1∑

j=dcne

1− η

n

( i

j

)η)d

×
n∏

j=i+1

[
1− (1 + O(log−1/2 n))(1− η)

d

n

(j

i

)η]

= (1 + O(log−1/2 n))d(1− x + c1−ηxη)d

× exp
(
− (1 + o(1))

1− η

1 + η
d(x−η − x)

)
,

and tends to no(1) exp[−(1 + o(1)) d g(x0(η))] as c → 0. Thus, this
probability is smaller than, say, no(1) exp[−0.75 d g(x0(η))] for c small
enough. From this we can show that the probability that H contains a
component of size k, where 2 ≤ k ≤ k0 = O(1), is bounded from above
by

k0∑

k=2

(
(1− c)n

k

)
kk−2

(
no(1) exp[−0.75 d g(x0(η))]

)k( d

cn

)k−1

, (7)

and tends to 0 as n → ∞, for δ small enough. Moreover, the expec-
tation of the number of components of H larger than k0 and smaller
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than 2n/3, is, for c small enough, bounded from above by

2n/3∑

k=k0+1

(
(1− c)n

k

)
kk−2

(
1− (1−η)

d

2n

)(k−2k/
√

d)((1−c)n−k)( d

cn

)k−1

, (8)

and tends to 0 as n → ∞ provided δ is small enough. Notice that in
order to show (7) and (8) we cannot use Lemma 3.5 since the error
term, following from the concentration of random variables, is too big.
Instead of this we are using the universal upper bounds for the proba-
bilities that edge is present or absent in the subgraph H. For example,
the probability that edge is present in H is smaller or equal than the
probability that {cn, n} is an edge in G.

Finally, one can show that a.a.s. every vertex i < cn is connected
with large component in H, completing the proof of Theorem 5.2. ¤

Let us note that, as follows from the above argument, a.a.s. near the
threshold all isolated vertices have labels (1 + o(1))x0(η)n. This is one
more evidence of the ‘middle-age crisis’ of vertices of the protean graph
we have already pointed out in the remark following Theorem 4.2: the
vertices of medium labels are of smallest degrees since they have lost
their ‘old’ neighbours which have already been renewed, yet there are
not old enough to attract ‘new’ ones. We also remark that the minimum
cmin(η) related to the expected degrees of vertices is not equal to x0(η)
which identifies the labels of the isolated vertices at the connectivity
threshold. For instance, for the ‘internet constant’ ηwww = 0.91, we
have cmin(ηwww) ∼ 0.197 while x0(ηwww) ∼ 0.177.

We conclude the paper with one more result on the protean process
Pn(d, η) = {(P t

n(d, n), σt)}∞t=0 which does not have its counterpart for
the random graph process {G(n, p)}0≤p≤1. Let A be a graph property
such that A holds for Pn(d, η) a.a.s. but for τ(A), defined as

τ(A) = min{t : P t
n(d, η) has not A} ,

we have P(τ(A) < ∞) = 1, i.e., with probability one at some stage
of the protean process Pn(d, η) = {(P t

n(d, n), σt)}∞t=0 the property A
disappears for some time. Then a recovery time rec(A) for A is defined
as

rec(A) = min{t > τ(A) : P t
n(d, η) has A} − τ(A) ,

i.e., rec(A) tells us how long it takes for a protean graph to regain a
typical property A. Note that since A holds a.a.s., and after O(n log n)
steps each vertex of Pn(d, η) is renewed at least once, so a.a.s. rec(A) =
O(n log n). However, typically, the recovery time is smaller than the
above bound implied by the coupon collector problem. The following
theorem estimates rec(C) in the case graph is connected.
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Theorem 5.3. Let η ∈ (0, 1) and d = a log n, where a > 1/g(x0) and
the function g(x) and x0 are defined as in (4) and (5). Then

rec(C) · (1− η)a

(x0)η

log n

n
−→D Z ,

where the random variable Z, has the exponential distribution, i.e., for
every z ≥ 0,

P(Z ≥ z) = e−z .

Proof. The main part of the proof is to show that a.a.s. at the moment
τ(C) the protean graph consists of a large component and a single
isolated vertex i of the rank w = (1 + o(1))x0n (note that for such
vertices w the probability of being isolated is maximized). Note also
that x0 minimizes continuous function g(x) in the interval (0, 1), which
means that it is enough to show that g(w/n) ≤ (1+o(1))g(x0). Again,
we just give a sketch of the proof, leaving out technical details.

Let us consider first n log2 n steps of the process. The probabilities
that during that time in the protean process

• an isolated vertex of the rank w, where g(w/n) ≤ (1 + ε)g(x0),
• an isolated vertex of the rank w, where g(w/n) > (1 + ε)g(x0),
• a component of size k, 2 ≤ k ≤ 2n/3,

appears, we denote by ρ1(ε), ρ2(ε), and ρ3, respectively. In order to
estimate them let us compute first the probability ρ(i, j, t) that a vertex
i becomes isolated at time t due to the fact that in this step we chose
the only neighbour j of i in the preceding graph to be renewed. Let `i

and `j denote the ranks of i and j, respectively, in the protean graph
constructed after first t − 1 steps. Then, arguing as in (6), we may
estimate ρ(i, j, t) by

o(n exp(− log3/2 n)) + (1 + o(1))
1

n
p(`i, `j)

×
`i−1∏
r=1

[
1− (1 + O(log−1/2 n))

1− η

n

(`i

r

)η]d

×
n∏

s=`i+1,s6=`j

[
1− (1 + O(log−1/2 n))

1− η

n
d
( s

`i

)η]

= n−2+o(1)
(`j

`i

)η

exp
(
− (1 + o(1))g

(`i

n

)
d
)

(9)
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for `i < `j, and

o(n exp(− log3/2 n)) + (1 + o(1))
1

n
p(`j, `i)

×
`i−1∏

r=1,r 6=`j

[
1− (1 + O(log−1/2 n))

1− η

n

(`i

r

)η]d

×
n∏

s=`i+1

[
1− (1 + O(log−1/2 n))

1− η

n
d
( s

`i

)η]

= n−2+o(1)
( `i

`j

)η

exp
(
− (1 + o(1))g

(`i

n

)
d
)

(10)

for `i > `j.
Let ε > 0 be a positive constant. Let us denote by At(i) the event

that a vertex i of the rank w becomes isolated at step t of the process
and g(w/n) ≤ (1 + ε/4)g(x0); moreover, let At =

⋃n
i=1 At(i). The

events B′
t(i) and B′(i) are defined in a similar way, but this time, for

the rank w of i at the moment when i becomes isolated, we want to
have g(w/n) > (1 + ε)g(x0). From (9) and (10) we get

n−1−(1+o(1))(1+ε/4)ag(x0) ≤ P(At(i)) ≤ n−1−(1+o(1))ag(x0),

while

P(B′
t(i)) ≤ n−1−(1+o(1))(1+ε)ag(x0),

and

P(B′
t) ≤

n∑
i=1

P(B′
t(i)) ≤ n−(1+o(1))(1+ε)ag(x0). (11)

To estimate P(At) we have to notice that one can use Lemma 3.5 to
prove that for i 6= i′ the event At(i) and At(i

′) are, in a way, ‘weakly
dependent’, i.e.,

P(At(i) ∩At(i
′)) = P(At(i))P(At(i

′))no(1)Θ(1 + n2η−1).

Thus, Bonferroni’s inequality gives

P(At) = P
( n⋃

i=1

At(i)
)

≥
n∑

i=1

P(At(i))−
∑

1≤i<i′≤n

P(At(i) ∩At(i
′)) ≥ n−(1+ε/3)ag(x0) .
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From (11) we get immediately

ρ2(ε) =

n log2 n∑
t=1

P(B′
t) ≤ n1−(1+o(1))(1+ε)ag(x0). (12)

Again, one can use Lemma 3.5 to show that for t1 < t2

P(At1 ∩At2) = P(At1)P(At2)n
o(1) ,

and from Bonferroni’s inequality

ρ1(ε) ≥ P
( n log2 n⋃

t=1

At

)
≥ n1−(1+ε/2)ag(x0). (13)

Moreover, it can also be proved that

ρ3 ≤ n1+o(1)[P(At)]
2 ≤ n1−(1+o(1))2ag(x0) ≤ ρ2(ε). (14)

(In order to do it one should notice that, since the expected number of
large components tends to 0 quickly, it is enough to consider only the
components of the bounded size, and then use Lemma 3.5 to estimate
the probability that they appear; since the argument is fairly standard
we omit the details).

Now let us consider the first n(1+ 3
4
)ag(x0) log2 n steps of the protean

process. From (12), (13) and (14) it follows that if the graph becomes
disconnected during this period then, a.a.s. it is due to the appearance
of a single isolated vertex of rank w, where g(w/n) ≤ (1 + ε)g(x0).

Let Dk, k = 0, 1, . . . , k0, where k0 = n(1+ 3
4
)ag(x0)−1/3, be an event

that between 2kn log2 n and (2k +1)n log2 n steps an isolated vertex of
the rank w, where g(w/n) ≤ (1 + ε)g(x0) appears. Let F be the event
that every vertex of the graphs was at least one time renewed in time
t ∈ ((2k−1)n log2 n, 2kn log2 n)), for each k = 1, . . . , k0. Then, P(F) ≥
1 − exp(− log3/2 n). Moreover, P(Dk) = ρ1(ε), and conditioned on F,
all event Dk are independent. Thus, since k0ρ1(ε) →∞ as n →∞, we

have P
( ⋃k0

k=0 Dk

)
→ 1. Consequently, a.a.s. τ(C) = n(1+o(1))ag(x0)) and

at the moment τ(C) the protean graph consists of a giant component
and a single isolated vertex i0 of rank (1 + o(1))x0n.

The rest of the proof is straightforward. Let us consider the first
Θ(n/ log n) steps after the moment when the graph became discon-
nected. The probability that we renew vertex i0 at that time tends to
0 as n →∞, and by the argument similar to the one used to estimate
ρ1(ε), ρ2(ε), ρ3, above, so is the probability that we create additional
small component of P t

n(d, η). Thus, the graph becomes connected if one
of the renewed vertices will choose i0 as a neighbour. Since the weight
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of i0 can change only slightly during Θ(n/ log n) steps, the probability
that for some z ≥ 0

rec(C) ≥ z
(x0)

η

(1− η)a

n

log n
= z

(x0)
η

1− η

n

d
,

is given by

[
1− (1 + o(1))(1− η)

d

n

( n

x0n

)η]z
(x0)η

1−η
n
d

=
[
1− (1 + o(1))(1− η)

d

n
(x0)

−η
]z

(x0)η

1−η
n
d

= (1 + o(1))e−z,

so the assertion follows. ¤
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