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Abstract. In the recently introduced model for cleaning a graph with
brushes, we use a degree-greedy algorithm to clean a random d-regular
graph on n vertices (with dn even). We then use a differential equations
method to find the (asymptotic) number of brushes needed to clean a
random d-regular graph using this algorithm. As well as the case for
general d, interesting results for specific values of d are examined. We
also state various open problems.
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1 Introduction

The cleaning model, introduced in [5, 6], considers a network of pipes that must
be periodically cleaned of a contaminant that regenerates, for example, algae
in water pipes. This is accomplished by having cleaning agents, colloquially,
‘brushes’, assigned to some vertices. To reduce the recontamination, when a
vertex is ‘cleaned’, a brush must travel down each contaminated edge. Once a
brush has traversed an edge, that edge has been cleaned. A graph G has been
cleaned once every edge of G has been cleaned. McKeil [5] considered the model
where more than one brush can travel down an edge and brushes can travel down
cleaned edges. In [6] and this paper only one brush is allowed to travel along an
edge and a brush is not allowed to travel down an edge that has already been
cleaned.

Explicitly, every edge and vertex of a graph is initially dirty and a fixed
number of brushes start on a set of vertices. At each step, a vertex v and all
its incident edges which are dirty may be cleaned if there are at least as many
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brushes on v as there are incident dirty edges. When a vertex is cleaned, every in-
cident dirty edge is traversed (i.e. cleaned) by one and only one brush, moreover,
brushes cannot traverse a clean edge. This cleaning process is a combination of
the chip-firing game and edge-searching on a simple finite graph. The approach
in [6], and taken here, is that a graph is cleaned when every vertex, and hence
every edge, has been cleaned. This may result in vertices with no dirty edges
being cleaned in which case no brushes move but this approach simplified much
of the analysis in [6]. See Figure 1 for an example of this cleaning process. The
initial configuration has only 2 brushes, both at a. The solid edges are dirty and
the dotted edges are clean. The circle indicates which vertex is cleaned next.
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Fig. 1. An example of the cleaning process for graph G.

One condition that this model has, like chip-firing but not searching, is that
the cleaning process is to be automatic, i.e. a union of ‘vertex firing’ sequences
where each sequence cleans the graph, continuing on for the lifetime of the
network. Therefore, the problems to solve are: firstly, a brush configuration and
corresponding vertex firing sequence that cleans the graph; and secondly, having
the final configuration of brushes be a starting configuration for another vertex
firing sequence that also cleans the graph; and so on. In [6], we show that the
final configuration of any cleaning sequence is a valid starting configuration of
another cleaning sequence.

In this paper, we are interested in the asymptotic number of brushes needed
to clean random d-regular (finite, simple) graphs. At one extreme, the graph
could consist of disjoint copies of Kd+1. From [6], Kd+1 requires essentially d2/4
brushes so that the whole graph requires approximately nd/4. At the lower end,
if d is even then a ring of bipartite graphs Kd/2,d/2 chained together (see Figure 2
for the case d = 4) require only d2/4 brushes regardless of the number of vertices
(by working around the ring). If d is odd then every vertex has at least one brush
in either the original or final configuration (see [6] for more details) so that a
graph on n vertices requires at least n/2 brushes.

We propose a linear time algorithm to clean d-regular graphs and an a.a.s.
upper bound ud on the number of brushes required by the algorithm. The asymp-
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Fig. 2. An example of the cleaning process for a 4-regular graph requiring 8 brushes.

totically almost sure lower bound ld follows from the fact that a.a.s. all sets of
size ⌊n/2⌋ have at least ld edges going to its complement.

In Section 4 we observe that if d = 2, then the brush number (asymptotically)
is (1+o(1)) log n; for d = 3, the brush number is equal to n/2+2 a.a.s.; for d = 4,
(1 + o(1))n/3 brushes are enough to clean a graph a.a.s.; and for d = 5, roughly
0.644n. For larger d, numerical evidence suggests that each brush on average
cleans between 2 and 2.5 edges. In order to get an asymptotically almost sure
upper bound on the brush number we use a degree-greedy algorithm, [9], to clean
the graph and then use the differential equation method, studied in [12] to find
the asymptotic number of brushes required.

In Section 2 we introduce the formal definitions for the cleaning process and a
description of the pairing model of random regular graphs which is used instead
of working directly with in the uniform probability space.

2 Definitions

The following cleaning algorithm and terminology was recently introduced in [6].
Formally, at each step t, ωt(v) denotes the number of brushes at vertex v

(ωt : V → N ∪ {0}) and Dt denotes the set of dirty vertices. An edge uv ∈ E is
dirty if and only if both u and v are dirty: {u, v} ⊆ Dt. Finally, let Dt(v) denote
the number of dirty edges incident to v at step t:

Dt(v) =

{

|N(v) ∩ Dt| if v ∈ Dt

0 otherwise.

Definition 1. The cleaning process P(G, ω0) = {(ωt, Dt)}T
t=0 of an undi-

rected graph G = (V, E) with an initial configuration of brushes ω0 is as
follows:

(0) Initially, all vertices are dirty: D0 = V ; Set t := 0
(1) Let αt+1 be any vertex in Dt such that ωt(αt+1) ≥ Dt(αt+1). If no such

vertex exists, then stop the process (T = t), return the cleaning sequence

α = (α1, α2, . . . , αT ), the final set of dirty vertices DT , and the final

configuration of brushes ωT
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(2) Clean αt+1 and all dirty incident edges by moving a brush from αt+1 to
each dirty neighbour. More precisely, Dt+1 = Dt \ {αt+1}, ωt+1(αt+1) =
ωt(αt+1) − Dt(αt+1), and for every v ∈ N(αt+1) ∩ Dt, ωt+1(v) = ωt(v) + 1
(the other values of ωt+1 remain the same as in ωt)

(3) t := t + 1 and go back to (1)

Note that for a graph G and initial configuration ω0, the cleaning process can
return different cleaning sequences and final configurations of brushes; consider,
for example, an isolated edge uv and ω0(u) = ω0(v) = 1. It has been shown (see
Theorem 2.1 in [6]), however, that the final set of dirty vertices is determined
by G and ω0. Thus, the following definition is natural.

Definition 2. A graph G = (V, E) can be cleaned by the initial configuration
of brushes ω0 if the cleaning process P(G, ω0) returns an empty final set of dirty
vertices (DT = ∅).

Let the brush number, b(G), be the minimum number of brushes needed to
clean G, that is,

b(G) = min
ω0:V →N∪{0}

{

∑

v∈V

ω0(v) : G can be cleaned by ω0

}

.

Similarly, bα(G) is defined as the minimum number of brushes needed to clean
G using the cleaning sequence α.

It is clear that for every cleaning sequence α, bα(G) ≥ b(G) and b(G) =
minα bα(G). (The last relation can be used as an alternative definition of b(G).)
In general, it is difficult to find b(G), but bα(G) can be easily computed. For this,
it seems better not to choose the function ω0 in advance, but to run the cleaning
process in some order, and compute the initial number of brushes needed to
clean a vertex. We can adjust ω0 along the way

ω0(αt+1) = max{2Dt(αt+1) − deg(αt+1), 0}, for t = 0, 1, . . . , |V | − 1, (1)

since that is how much brushes we have to add over and above what we get for
free.

Our results refer to the probability space of random d-regular graphs with
uniform probability distribution. This space is denoted Gn,d, and asymptotics
(such as “asymptotically almost surely”, which we abbreviate to a.a.s.) are for
n → ∞ with d ≥ 2 fixed, and n even if d is odd.

Instead of working directly in the uniform probability space of random regular
graphs on n vertices Gn,d, we use the pairing model of random regular graphs,
first introduced by Bollobás [1], which is described next. Suppose that dn is even,
as in the case of random regular graphs, and consider dn points partitioned into
n labeled buckets v1, v2, . . . , vn of d points each. A pairing of these points is
a perfect matching into dn/2 pairs. Given a pairing P , we may construct a
multigraph G(P ), with loops allowed, as follows: the vertices are the buckets
v1, v2, . . . , vn, and a pair {x, y} in P corresponds to an edge vivj in G(P ) if x
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and y are contained in the buckets vi and vj , respectively. It is an easy fact
that the probability of a random pairing corresponding to a given simple graph
G is independent of the graph, hence the restriction of the probability space of
random pairings to simple graphs is precisely Gn,d. Moreover, it is well known
that a random pairing generates a simple graph with probability asymptotic to
e(1−d2)/4 depending on d, so that any event holding a.a.s. over a probability space
of random pairings also holds a.a.s. over the corresponding space Gn,d. For this
reason, asymptotic results over random pairings suffice for our purposes. The
advantage of using this model is that the pairs may be chosen sequentially so
that the next pair is chosen uniformly at random over the remaining (unchosen)
points. For more information on this model, see [10].

3 Some lower bounds

When a graph G is cleaned using the cleaning process described in Definition 1,
each edge of G is traversed exactly once and by exactly one brush.

Definition 3. Given some initial configuration ω0 of brushes, suppose G =
(V, E) admits a cleaning sequence α = (α1, α2, . . . , αT ) which cleans G. As each
edge in G is traversed exactly once and by exactly one brush, an orientation of
the edges of G is permitted such that for every αiαj ∈ E(G), αi → αj if and
only if i < j.

The brush path of a brush b is the oriented path formed by the set of edges
cleaned by b (note that a vertex may not be repeated in a brush path). Then G
can be decomposed into bα(G) oriented brush paths (note that no brush can stay
at its initial vertex in the minimal brush configuration).

The minimum number of paths into which graph G can be decomposed yields
a lower bound for b(G); only a lower bound because some path decompositions
would not be valid in the cleaning process. For example, K4 can be decomposed
into two edge-disjoint paths, but b(K4) = 4.

Following Definitions 1 and 3, every vertex of odd degree in a graph G will be
the endpoint of (at least) one brush path. This leads to a natural lower bound for
b(G) since any graph with do odd vertices, can be decomposed into a minimum
of do/2 paths (see [6] for more details).

Theorem 1. Given initial configuration ω0, suppose G can be cleaned yielding
final configuration ωT . Then for every vertex v in G with odd degree, either
ω0(v) > 0 or ωT (v) > 0. In particular, b(G) ≥ do(G)/2 where do(G) denotes a
number of vertices of odd degree.

The result can be improved a little if there is a lower bound on the vertex degrees
(see Section 4.3 for details).

Another general lower bound for d-regular graphs can be obtained as follows.
By [6, Theorem 3.2],

b(G) ≥ max
j

min
S⊆V,|S|=j

{jd − 2|E(G[S])|.}



6 Cleaning Random d-regular Graphs with Brushes

(The proof is simply to observe that the minimum is a lower bound on the number
of edges going from the first j vertices cleaned to elsewhere in the graph.) So,
suppose that x and y are such that the expected number of sets S of xn + o(n)
vertices in G ∈ Gn,d with yn + o(n) edges to the complementary V (G) \ S is
o(1). Then this theorem, together with the first moment principle, gives that the
brush number is a.a.s. at least yn + o(n). Some standard calculations using the
pairing model then give us the following lower bounds a.a.s.: 0.220n for d = 4,
0.365n for d = 5 (although this can easily be improved to the lower bound of
0.5n), 0.52n for d = 6, and 0.687n for d = 7. We omit further details from this
paper.

4 Cleaning random d-regular graphs

The differential equations method (described in [12]) is used here to find an
upper bound on the number of brushes needed to the clean the graph using a
degree-greedy algorithm. We consider d = 2 first, then state some general results,
and apply them to the special cases of 3 ≤ d ≤ 5 before discussing higher values
of d.

4.1 2-regular graphs

Let Y = Yn be the total number of cycles in a random 2-regular graph on n
vertices. Since exactly two brushes are needed to clean one cycle, we need 2Yn

brushes in order to clean a 2-regular graph.
We know that the random 2-regular graph is a.a.s. disconnected; by simple

calculations we can show that the probability of having a Hamiltonian cycle is
asymptotic to 1

2e3/4
√

πn−1/2 (see, for example, [10]).
We also know that the total number of cycles Yn is sharply concentrated

near (1/2) log n. It is not difficult to see this by generating the random graph
sequentially using the pairing model. The probability of forming a cycle in step i
is exactly 1/(2n−2i+ 1), so the expected number of cycles is (1/2) log n+O(1).
The variance can be calculated in a similar way. So we get that a.a.s. the brush
number for a random 2-regular graph is (1 + o(1)) log n.

4.2 d-regular graphs (d ≥ 3) — the general setting

In this subsection, we assume d ≥ 3 is fixed with dn even. In order to get an
asymptotically almost sure upper bound on the brush number, we study an
algorithm that cleans random vertices of minimum degree. This algorithm is
called degree-greedy because the vertex being cleaned is chosen from those with
the lowest degree.

We start with a random d-regular graph G = (V, E) on n vertices. Initially,
all vertices are dirty: D0 = V . In every step t of the cleaning process, we clean
a random vertex αt, chosen uniformly at random from those vertices with the
lowest degree (Dt = Dt−1 \ {αt}) in the induced subgraph G[Dt−1]. In the first
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step, d brushes are needed to clean random vertex α1 (we say that this is “phase
zero”). Note that this is a.a.s. the only vertex whose degree in Dt is d at the
time of cleaning. Indeed, if αt (t ≥ 2) has degree d in G[Dt−1], then G[Dt−1]
consists of a connected component(s) of G and thus G is disconnected. It was
proven independently in [2, 11] that G is disconnected with probability o(1) and
later extended to d growing with n in [4]. The induced subgraph G[D1] now has
d vertices of degree d − 1 and n − d − 1 vertices of degree d.

In the second step, d− 2 extra brushes are needed to clean a random vertex
α2 of degree d−1. Typically, in the third step, a vertex of degree d−1 is cleaned
and in each subsequent step, a vertex of degree d−1 is cleaned until some vertex
of degree d− 2 is produced in the subgraph induced by the set of dirty vertices.
After cleaning the first vertex of degree d − 2, we typically return to cleaning
vertices of degree d − 1, but after a some more steps of this type we may clean
another vertex of degree d − 2. When vertices of degree d − 1 become plentiful,
vertices of lower degree are more commonly created and these hiccups occur
more often. When vertices of degree d− 2 take over the role of vertices of degree
d− 1, we say (informally!) that the first phase finishes and we begin the second
phase. In general, in the kth phase a mixture of vertices of degree d − k and
d − k − 1 are cleaned.

It is usually difficult to study the behaviour of a greedy algorithm at the end
of the process. Fortunately, in this case we need to study the first ⌊(d − 1)/2⌋
phases since the rest of vertices are cleaned ‘for free’. The details have been
omitted, but can be found in [9].

For 0 ≤ i ≤ d, let Yi = Yi(t) denote the number of vertices of degree i

in G[Dt]. (Note that Y0(t) = n − t −∑d
i=1 Yi(t) so Y0(t) does not need to be

calculated, but it is useful in the discussion.) Let S(t) =
∑d

l=1 lYl(t) and for any
statement A, let δA denote the Kronecker delta function

δA =

{

1 if A is true,

0 otherwise.

It is not difficult to see that

E(Yi(t) − Yi(t − 1) | G[Dt−1] ∧ degG[Dt−1](αt) = r)

= fi,r((t − 1)/n, Y1(t − 1)/n, Y2(t − 1)/n, . . . , Yd(t − 1)/n)

= −δi=r − r
iYi(t − 1)

S(t − 1)
+ r

(i + 1)Yi+1(t − 1)

S(t − 1)
δi+1≤d (2)

for i, r ∈ [d] such that Yr(t) > 0. Indeed, αt has degree r, hence the term −δi=r.
When a pair of points in the pairing model is exposed, the probability that the
other point is in a bucket of degree i (that is, the bucket contains i unchosen
points) is asymptotic to iYi(t− 1)/S(t− 1). Thus riYi(t− 1)/S(t− 1) stands for
the expected number of the r buckets found adjacent to αt which have degree
i. This contributes negatively to the expected change in Yi, whilst buckets of
degree i + 1 which are reached contribute positively (of course, only if this type
of vertices (buckets) exist in a graph; thus δi+1≤d). This explains (2).
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Suppose that at some step t of the phase k, cleaning a vertex of degree d− k
creates, in expectation, βk vertices of degree d − k − 1 and cleaning a vertex
of degree d − k − 1 decreases, in expectation, the number of vertices of degree
d− k − 1 by τk. After cleaning a vertex of degree d− k, we expect to then clean
(on average) βk/τk vertices of degree d− k− 1. Thus, in phase k, the proportion
of steps which clean vertices of degree d − k is 1/(1 + βk/τk) = τk/(βk + τk).
If τk falls below zero, vertices of degree d − k − 1 begin to build up and do not
decrease under repeated cleaning vertices of this type and we move to the next
phase.

From (2) it follows that

βk = βk(x, y1, y2, . . . , yd) = fd−k−1,d−k(x, y1, y2, . . . , yd) = fd−k−1,d−k(x,y),

τk = τk(x, y1, y2, . . . , yd) = − fd−k−1,d−k−1(x, y1, y2, . . . , yd)

= − fd−k−1,d−k−1(x,y),

where x = t/n and yi(x) = Yi(t)/n for i ∈ [d]. This suggests (see [12] for
more information on the differential equations method) the following system of
differential equations

dyi

dx
= F (x,y, i, k)

where

F (x,y, i, k) =

{

τk

βk+τk

fi,d−k(x,y) + βk

βk+τk

fi,d−k−1(x,y) for k ≤ d − 2,

fi,1(x,y) for k = d − 1.

At this point we may formally define the interval [xk−1, xk] to be phase k, where
the termination point xk is defined as the infimum of those x > xk for which
at least one of the following holds: τk ≤ 0 and k < d − 1; τk + βk = 0 and
k < d − 1; yd−k ≤ 0. Using final values yi(xk) in phase k as an initial values for
phase k +1 we can repeat the argument inductively moving from phase to phase
starting from phase 1 with obvious initial conditions yd(0) = 1 and yi(0) = 0 for
0 ≤ i ≤ d − 1.

The general result [9, Theorem 1] studies a deprioritized version of degree-
greedy algorithms, which means that the vertices are chosen to process in a
slightly different way, not always the minimum degree, but usually a random
mixture of two degrees. Once a vertex is chosen, it is treated the same as in the
degree-greedy algorithm. The variables Y are defined in an analogous manner.
The hypotheses of the theorem are straightforward to verify. The conclusion is
that, for a certain algorithm using a deprioritized ‘mixture’ of the steps of the
degree-greedy algorithm, with variables Yi defined as above, we have that a.a.s.

Yi(t) = nyi(t/n) + o(n)

for 1 ≤ i ≤ d for phases k = 1, 2, . . . , m, where m denotes the smallest k for
which either k = d − 1, or any of the termination conditions for phase k hold
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at xk apart from xk = inf{x > xk−1 : τk ≤ 0}. We omit all details pointing
the reader to [9] and the general survey [12] about the differential equations
method which is a main tool in proving [9, Theorem 1]. In addition, the theorem
gives information on an auxiliary variable such as, of importance to our present
application, the number of brushes used. Instead of quoting this precisely, we
use it merely as justification for being able to use the above equations as if they
applied to the greedy algorithm. (This is no doubt the case, but it is not actually
proved in [9].) The solutions to the relevant differential equations for d = 3 and
4 are shown in Figure 3.
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Fig. 3. Solution to the differential equations.

In the kth phase a mixture of vertices of degree d−k and d−k−1 are cleaned.
Since max{2l− d, 0} brushes are needed to clean vertex of degree l (see (1)), we
need

uk
d = (1 + o(1))n

(

max{d − 2k, 0}
∫ xk

xk−1

τk

τk + βk
dx

+ max{d − 2k − 2, 0}
∫ xk

xk−1

βk

τk + βk
dx

)

brushes in phase k. Thus, the total number of brushes needed to clean a graph
using the degree-greedy algorithm is equal to

ud =

⌊(d−1)/2⌋
∑

k=1

uk
d = (1 + o(1))n

(

⌊(d−1)/2⌋
∑

k=1

(

(d − 2k − 2)(xk − xk−1)

+ 2

∫ xk

xk−1

τk

τk + βk
dx

)

+ δd is odd

∫ xk

xk−1

βk

τk + βk
dx

)

.
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4.3 3-regular graphs

Let G = (V, E) be any 3-regular graph on n vertices. The first vertex cleaned
must start three brush paths, the last one terminates three brush paths, and
all other vertices must start or finish at least one brush path, so the number of
brush paths is at least n/2 + 2.

The result mentioned above can be shown to result in an upper bound of
n/2 + o(n) for the brush number of a random 3-regular (i.e. cubic) graph. We
do not provide details because of the following stronger result. It is known [8]
that a random 3-regular graph a.a.s. has a Hamilton cycle. The edges not in
a Hamilton cycle must form a perfect matching. Such a graph can be cleaned
by starting with three brushes at one vertex, and moving along the Hamilton
cycle with one brush, introducing one new brush for each edge of the perfect
matching. Hence the brush number of a random 3-regular graph with n vertices
is a.a.s. n/2 + 2.

4.4 4-regular graphs

For 4-regular graphs, we are interested in phase 1 only: we need two brushes to
clean vertices of degree 3, but vertices of degree 2 are cleaned ‘for free’. Note
that y1(x) = y2(x) = 0. We have the following system of differential equations

dy4

dx
=

−6y4(x)

3y3(x) + 2y4(x)

dy3

dx
=

−3y3(x) + 4y4(x)

3y3(x) + 2y4(x)

with the initial conditions y4(0) = 1 and y3(0) = 0. The particular solution (see
Figure 3 (b)) to these differential equations is

y4(x) = 5 − 4
√

1 + 3x + 3x

y3(x) =
4(−3 + 3

√
1 + 3x − 5x + x

√
1 + 3x)

2 −
√

1 + 3x
,

so β1 = −3 + 3
√

1 + 3x and τ1 = 3 − 2
√

1 + 3x. Thus phase 1 finishes at time
t1 = 5n/12 (x1 = 5/12 is a root of the equation τ1(x) = 0) and the number of
vertices of degree 3 cleaned during this phase is asymptotic to

n

∫ 5/12

0

τ1

τ1 + β1
dx = n/6 .

Since we need 2 brushes to clean one such vertex we get an asymptotically almost
sure upper bound of u4 = (1 + o(1))n/3.

On the other hand, it is true that a.a.s. a random 4-regular graph can be
decomposed into two edge-disjoint Hamilton cycles [3], and hence four paths.

Note that the following two problems can be asked in general for any d ≥ 3.
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Problem 1. Is it true that for the random case it is best to clean lowest degree
vertices?

In other words, if one is going to choose a random vertex of given degree
then one might as well choose a random vertex of minimum degree.

If Problem 1 is proven to be true, then the following problem should be
considered. To get the brush number one might (in fact, probably should) choose
non-random vertices during the cleaning process. But it might be true that a.a.s.
one cannot save more than o(n) brushes compared to the greedy algorithm under
consideration.

Problem 2. Is it true that a.a.s. the brush number for a random d-regular graph
is ud(1 − o(1))?

4.5 5-regular graphs

In order to study the brush number for 5-regular graphs yielded by the degree-
greedy algorithm, we cannot consider phase 1 only as before; we need 3 brushes
to clean vertices of degree 4 but also 1 brush to clean vertices of degree 3. Thus
two phases must be considered.

In phase 1, y1(x) = y2(x) = y3(x) = 0 and we have the following system of
differential equations

dy5

dx
=

−20y5(x)

8y4(x) + 5y5(x)

dy4

dx
=

−8y4(x) + 15y5(x)

8y4(x) + 5y5(x)

with the initial conditions y5(0) = 1 and y4(0) = 0. The numerical solution (see
Figure 4 (a)) suggests that the phase finishes at time t1 = 0.1733n. The number
of brushes needed in this phase is asymptotic to (the numerical solution)

u1
5 = (1 + o(1))

(

3n

∫ t1/n

0

τ1

τ1 + β1
dx + n

∫ t1/n

0

β1

τ1 + β1
dx

)

= (1 + o(1))

(

t1 + 2n

∫ t1/n

0

τ1

τ1 + β1
dx

)

≈ 0.3180n .

In the phase 2, z1(x) = z2(x) = 0 and we have another system of differential
equations

dz5

dx
=

−15z5(x)

6z3(x) + 4z4(x) + 5z5(x)

dz4

dx
=

−3(4z4 − 5z5(x))

6z3(x) + 4z4(x) + 5z5(x)

dz3

dx
=

−6z3(x) + 8z4(x) − 5z5(x)

6z3(x) + 4z4(x) + 5z5(x)
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with the initial conditions z5(t1/n) = y5(t1/n) = 0.5088, z4(t1/n) = y4(t1/n) =
0.3180 and z3(t1/n) = 0. The numerical solution (see Figure 4 (b)) suggests that
the phase finishes (approximately) at time t2 = 0.7257n. The number of brushes
needed in this phase is asymptotic to (the numerical solution)

u2
5 = (1 + o(1))n

∫ t2/n

t1/n

τ2

τ2 + β2
dx ≈ 0.3259n .

Finally, we get an asymptotically almost sure upper bound of u5 = u1
5 + u2

5 ≈
0.6439n.
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(a) 5-regular graph, phase 1 (b) 5-regular graph, phase 2

Fig. 4. Solution to the differential equations.

4.6 d-regular graphs of higher order

d limn→∞ ud/n

3 0.5
4 0.334
5 0.644
6 0.684
7 0.949
8 1.057
9 1.305
10 1.444
11 1.684
12 1.842

d limn→∞ ud/n

13 2.078
14 2.248
15 2.482
16 2.661
17 2.893
18 3.079
19 3.311
20 3.502
21 3.733
22 3.928

d limn→∞ ud/n

23 4.159
24 4.358
25 4.589
26 4.791
27 5.022
28 5.227
29 5.457
30 5.664
31 5.895
32 6.104

d limn→∞ ud/n

99 21.422
100 21.653
149 33.169
150 33.404
199 45.036
200 45.273
249 56.979
250 57.217
299 68.975
300 69.215

Table 1. Upper bounds on the brush number for some d values.

Note that the lower bound for d = 4 (see Section 3) will be considerably lower
than the lower bound of n/2 + 2 for d = 3, whereas the upper bound we have
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been discussing is the same degree-greedy algorithm in all cases. However, the
upper bound is also sensitive to the parity of d. For the 4-regular case, vertices
of degree 2 are processed ‘for free’ and so one only really worries about degree
3 vertices and there are fewer of those processed than degree 2 vertices when
d = 3. But it seems that the parity of d does not affect the value of ud for d big
enough (see Figure 5 and Table 1).

Problem 3. Does limd→∞ limn→∞ ud/dn exist?

In Figure 5, the values of limn→∞ ud/dn have been presented for all d-values
up to 100, although we have only listed the first 30 and a few more values for
higher d in Table 1. The computations presented in the paper were performed
by using MapleTM [7]. The worksheets can be found at the following address:
http://www.mathstat.dal.ca/~pralat/.

0.1

0.12

0.14

0.16

0.18

0.2

20 40 60 80 100

Fig. 5. A graph of limn→∞ ud/dn versus d (from 3 to 100).

Finally, the most important open question is clearly the following:

Problem 4. Let G ∈ G(n, d). Is there a constant c such that the brush number
is asymptotically cdn?

4.7 Other models

In this section, we present more open problems.

Problem 5. What is the brush number for binomial random graphs G(n, p)?
What is a lower/upper bound? How about other random graph models, for
example models that give power law degree distribution or d-regular graphs
generated by the d-process?

Another version of the cleaning process was introduced in [5]. In this version,
when a vertex is cleaned multiple brushes are allowed to traverse each dirty edge.
Thus, the brush number B(G) of this generalized version is at most the classic
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one b(G). Using the degree-greedy algorithm to clean a random d-regular graph
for d even, no brush ‘gets stuck’ in the first ⌊(d− 1)/2⌋ phases, there is no point
to introduce more brushes in the initial configuration, and vertices in the last
phases are cleaned ‘for free’. So the upper bound obtained is the same as before.
For d odd, it is clear that one can save some brushes at phase (d− 1)/2 but the
following is still open.

Problem 6.

– Is it true that for G ∈ Gn,d, d even, b(G) − B(G) = o(n) a.a.s.?
– Is it true that for G ∈ Gn,d, d odd, b(G) − B(G) = Θ(n) a.a.s.? How far

apart are they?
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