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Abstract. The World Wide Web may be viewed as a graph each of whose vertices
corresponds to a static HTML web page, and each of whose edges corresponds to a
hyperlink from one web page to another. Recently there has been considerable interest
in using random graphs to model complex real-world networks to gain an insight into
their properties. In this paper, we propose a generalized version of the protean graph
(a random model of the web graph) in which the degree of a vertex depends on its age.
Classic protean graphs can be seen as a special case of the rank-based approach where
vertices are ranked according to age. Here, we investigate graph generation models
based on other ranking schemes and show that these models lead to graphs with a
power law degree distribution.

1. Introduction

Recently many new random graphs models have been introduced and analyzed by
certain common features observed in many large-scale real-world networks such as the
‘web graph’ (see, for instance, the survey [1]). The web may be viewed as a directed
graph whose nodes correspond to static pages on the web, and whose arcs correspond
to links between these pages.

One of the most characteristic features of this graph is its degree sequence. Broder
et al. [2] noticed that the distribution of degrees follows a power law: the fraction of
vertices with degree k is proportional to k−γ , where γ is a constant independent of the
size of the network (more precisely, γ ≈ 2.1 for in-degrees, γ ≈ 2.7 for out-degrees).
These observations suggest that the web is not well modeled by traditional random
graph models such as Gn,p (see, for instance [4]).

ÃLuczak and the author of this paper introduced in [6] another random graph model
of the undirected ‘web graphs’, the protean graph Pn(d, η), which is controlled by two
additional parameters (d ∈ N and 0 < η < 1). The major feature of this model is that
older vertices are preferred when joining a new vertex into the graph. In [6] it is proved
that the degrees of the Pn(d, η) are distributed according to the power law and the
behaviour near the connectivity threshold is studied. The author of this paper showed
also in [8] that the protean graph Pn(d, η) asymptotically almost surely (a.a.s.) has one
giant component, containing a positive fraction of all vertices, whose diameter is equal
to Θ(log n). (See also [9] where the growing protean graphs are studied.)

Classic protean graphs can be viewed as a special case of the rank-based approach
where vertices are ranked according to age. The general approach was first proposed
by Fortunato, Flammini and Menczer in [3], and the occurrence of a power law was
postulated based on simulations (Janssen and the author of this paper provided rigor-
ous proofs in [5]). In this approach, the vertices are ranked from 1 to n according to
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some ranking scheme (so the vertex with highest degree has rank 1, etc.), and the link
probability of a given vertex is proportional to its rank, raised to the power −η for some
η ∈ (0, 1); we will refer to η as the attachment strength. (Negative powers are chosen
since a low value for rank should result in a higher link probability.)

As we will show, protean graphs with rank-based attachment leads to power law
graphs for a variety of different ranking schemes. One obvious ranking scheme is to rank
vertices by age (the old get richer); as we already mentioned, this model was studied
in [6, 8] and this leads to a power law with the exponent 1+1/η. In this paper, we study
a ranking scheme where an external prestige label for each vertex is given and vertices
are ranked according to their prestige label. In order to allow for a different distribution
of “prestige” over the vertices, we considered also a random ranking scheme. Here,
each vertex is assigned an initial rank according to a given distribution. We consider
distributions of the following form. Let Ri be the initial rank of a vertex born at time
i. Then P(Ri ≤ k) = (k/n)s. First we show that, if s = 1, then the situation is similar
to the one described previously, and vertices with initial rank Ri exhibit behaviour as if
they had received fitness Ri/n. We also consider the case where s > 1, so the rank of
new vertices is biased towards the higher ranks.

These results suggest an explanation for the power law degree distribution often ob-
served in real-life networks such as the web graph, protein interaction networks, and
social networks. The growth of such networks can be seen as governed by a rank-based
attachment scheme, based on a ranking scheme that can be derived from a number
of different factors such as age, degree, or fitness. The exponent of the power law is
independent of these factors, but is rather a consequence of the attachment strength.
In addition, rank-based attachment accentuates the difference between higher ranked
vertices: the difference in link probability between the vertices ranked 1 and 2 is much
larger than that between the vertices ranked 100 and 101. This again corresponds to
our intuition of what constitutes a credible mechanism for link attachment.

In order to establish the right attachment strength to model a given real-life network
we should consider the following. In a graph in which the number of vertices of degree
k decreases roughly as k−γ the fraction of vertices of degree at least k changes roughly
as ∑

`≥k

O(`−γ) = O(k1−γ) .

Thus, in order to imitate this distribution the attachment strength η should be set to
η ∼ 1/(γ − 1).

2. Definitions

In this section, we formally define the graph generation model based on rank-based
attachment. The model produces a sequence {Gt}∞t=0 = {(Vt, Et)}∞t=0 of undirected
graphs on n vertices, where t denotes time. Our model has two fixed parameters: initial
degree d ∈ N , and attachment strength η ∈ (0, 1). At each time t, each vertex v ∈ Vt

has rank r(v, t) ∈ [n] (we use [n] to denote the set {1, 2, . . . , n}). In order to obtain a
proper ranking, the rank function r(·, t) : Vt → [n] is a bijection for all t, so every vertex
has a unique rank. In agreement with the common use of the word “rank”, high rank
refers to a vertex v for which r(v, t) is small: the highest ranked vertex is ranked number
one, so has rank equal to 1; the lowest ranked vertex has rank n. The initialization and
update of the ranking is done according to a ranking scheme. Various ranking schemes
can be considered; we first give the general model, and then list the ranking schemes.
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Let G0 = (V0, E0) be any graph on n vertices and r0 = r(·, 0) : V0 → [n] any initial
rank function. (For random labeling scheme we take any function l : V0 → (0, 1) and
the initial rank function is a function of l; for degree scheme r0 = r0(G0).) For t ≥ 1 we
form Gt from Gt−1 according to the following rules:

• Choose uniformly at random a vertex u ∈ Vt−1, delete u together with all edges
incident to it.

• Add a new vertex vt together with d edges from vt to existing vertices chosen
randomly with weighted probabilities. The edges are added in d substeps. In
each substep, one edge is added, and the probability that v is chosen as its
endpoint (the link probability), equals

r(v, t− 1)−η

∑n
i=1 i−η

=
1− η

n1−η + O(1)
r(v, t− 1)−η.

• Update the ranking function r(·, t) : Vt → [n] according to the ranking scheme.

Our model allows for loops and multiple edges; there seems no reason to exclude
them. However, there will not in general be very many of these, so excluding them can
be shown not to affect our conclusions in any significant way.

We now define the different ranking schemes.

• Ranking by age: The vertex added at time t obtains an initial rank n; its rank
decreases by one each time a vertex with smaller rank is removed.

• Ranking by inverse age: The vertex added at time t obtains an initial rank
1; its rank increases by one each time a vertex with higher rank is removed.

• Ranking by random labeling: The vertex added at time t obtains a label
l(vt) ∈ (0, 1) chosen uniformly at random. Vertices are ranked according to their
labels: if l(vi) < l(vj), then r(vi, t) < r(vj , t).

• Random ranking: The vertex added at time t obtains an initial rank Rt which
is randomly chosen from [n] according to a prescribed distribution. Formally, let
F : [0, 1] → [0, 1] be any cumulative distribution function. Then for all k ∈ [t],

P(Rt ≤ k) = F (k/t).

• Ranking by degree: After each time step t, vertices are ranked according to
their degrees in Gt, and ties are broken by age. Precisely, if deg(vi, t) < deg(vj , t)
then r(vi, t) < r(vj , t), and if deg(vi, t) = deg(vj , t) then r(vi, t) < r(vj , t) if i < j.

In this paper, due to the space limitations, we focus on ranking by random labeling
and random ranking with F (x) = xs for s ≥ 1. The other ranking schemes will be
studied in a journal version of this paper. In particular, it is interesting and non-trivial
task to investigate the ranking by degree scheme; in this case, it is not even clear how
long we have to wait to obtain a stationary distribution. For the other schemes (except
the random labeling case), it is enough to wait L steps for all vertices to be ‘renewed’ (for
the random labeling case we have to wait two times longer: the first round is needed to
have labels distributed uniformly at random, during the second one the process ‘forgets’
about the initial graph) and from that time the protean process is the Markov chain that
is in the stationary distribution (that is, the distribution determined by Gt on the set of
all ordered graphs on n vertices is identical for all t.) By the coupon collector problem,
a.a.s. L = n(log n + O(ω(n))) where ω(n) is any function tending to infinity with n
(for random labeling scheme, clearly L = 2n(log n + O(ω(n))) a.a.s.). Furthermore,
this distribution does not depend on the choice of G0 and r0. The random graph GL

corresponding to this distribution is called a protean graph Pn(d, η).
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In the rest of the paper, {Gt}∞t=1 is assumed to be a graph sequence generated by the
rank-based attachment model, with ranking scheme as defined in each particular section,
and d and η are assumed to be the initial degree and attachment strength parameters
of the model as defined above. The results are generally about the degree distribution
in GL, where the asymptotics are based on n tending to infinity.

We will use the stronger notion of wep in favour of the more commonly used a.a.s.,
since it simplifies some of our proofs. We say that an event holds with extreme probability
(wep), if it holds with probability at least 1− exp(−Θ(log2 n)) as n → ∞. Thus, if we
consider a polynomial number of events that each holds wep, then wep all events hold.
To combine this notion with asymptotic notations such as O() and o(), we follow the
conventions in [10].

3. Ranking by random labeling

In this scheme, each new vertex vt obtains a label l(vt) ∈ (0, 1) chosen uniformly at
random. (Note that the probability that two vertices receive the same label is zero.)
Vertices are ranked by their labels: if l(vi) < l(vj), then r(vi, t) < r(vj , t).

First we note that the process of choosing a label uar from (0, 1) does not imply
loss of generality. Namely, suppose that the labels are chosen from R according to any
probability distribution with a strictly increasing cumulative distribution function F .
Since F is an increasing function, labels F (l(vi)) lead to exactly the same ranking as
labels l(vi). But P(F (l(vi)) ≤ x) = P(l(vi) ≤ F−1(x)) = F (F−1(x)) = x, so the values
of labels F (l(vi)) are chosen from (0, 1) according to the uniform distribution.

First we investigate the expected degree of a vertex v at time L with a given age-rank
and a label. We use a(·, t) for a ranking by age and stay with r(·, t) for a ranking by
random labeling.

Theorem 3.1. Let 0 < η < 1, d ∈ N, i = i(n) ∈ [n], and 0 < l(vi) = l(vi)(n) < 1. If
n · l(vi) > log3 n, then the expected degree of a vertex vi with an age-rank a(vi, L) = i
that obtained a label l(vi), is given by

Edeg(vi, L) = d
i− 1
n− 1

+ (1 + O(log−1/2 n))d(1− η)l(vi)−η(1− i/n) ,

and wep

deg(vi, L) = Edeg(vi, L) + O(
√
Edeg(vi, L) log n) .

Proof. It is clear that the expected rank of vi is equal to l(vi)n at each step of the process.
Moreover, we can use the fact that a sum of independent random variables with large
enough expected value is not too far from its mean (see, for example, Theorem 2.8 in [4]).
From this it follows that, if ε ≤ 3/2, then the following inequality, known as a Chernoff
bound, holds

P (|r(vi, t)− Er(vi, t)| ≥ εEr(vi, t)) ≤ 2 exp
(
−ε2

3
Er(vi, t)

)
.

Therefore, wep r(vi, t) = l(vi)n(1 + O(log−1/2 n)) during the whole period (since L =
O(n log n)).

Let X(t, j) be a random indicator variable for an event that vertex vt (for which
a(vt, L) = t) joins vi at substep j of step when vt was born (i < t ≤ n, j ∈ [d]). It is
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clear that

P(X(t, j) = 1) = 1− P(X(t, j) = 0) =

(
l(vi)n(1 + O(log−1/2 n))

)−η

n1−η/(1− η) + O(1)

= (1 + O(log−1/2 n))(1− η)l(vi)−η/n.

The number of neighbours vt of vi such that t > i is a random variable and can be
expressed as a sum

∑n
t=i+1

∑d
j=1 X(t, j) of independent random variables. Note also

that vertex vi generated exactly d edges at the time it was born but only i vertices
(including vi) have not been ‘renewed’ since then. Thus,

Edeg(vi, L) = d
i− 1
n− 1

+ d(n− i)EX(t, j)

= d
i− 1
n− 1

+ (1 + O(log−1/2 n))d(1− η)l(vi)−η(1− i/n) .

Finally, since deg(vi, L) is expressed as a sum of independent random variables, we
can use the Chernoff bound to show the concentration result. ¤

Let Zk = Zk(n, d, η) denote the number of vertices of degree k and Z≥k =
∑

l≥k Zl.
The following theorem shows that the Z≥k’s follow a power law with exponent 1/η.
Since the Z≥k’s represent the cumulative degree distribution, this implies that the degree
distribution follows a power law with exponent 1 + 1/η.

Theorem 3.2. Let 0 < η < 1 and d ∈ N, log4 n ≤ k ≤ nη/ log4η n. Then wep

Z≥k =
(
1−O(log−1/3 n)

) η

1 + η

(
d(1− η)

k

)1/η

n.

Proof. This theorem is a simple consequence of Theorem 3.1. One can show that wep
each vertex vi such that

l(vi) ≥
(
1 + log−1/3 n

)(
d(1− η)(1− i/n)

k

)1/η

has fewer than k neighbours, and each vertex vi for which

l(vi) ≤
(
1− log−1/3 n

)(
d(1− η)(1− i/n)

k

)1/η

has more than k neighbours.
Thus,

EZ≥k =
n∑

i=1

(
1−O(log−1/3 n)

) (
d(1− η)(1− i/n)

k

)1/η

=
(
1−O(log−1/3 n)

) (
d(1− η)

k

)1/η

n

∫ 1

0
(1− x)1/η

=
(
1−O(log−1/3 n)

) η

1 + η

(
d(1− η)

k

)1/η

n

and the assertion follows from the Chernoff bound since EZ≥k = Ω(log4 n). ¤
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4. Randomly chosen initial rank

Next, we consider the case where the rank of the new vertex vi, Ri = r(vi, i), is
chosen at random from [n]. As described earlier, the ranks of existing vertices are
adjusted accordingly. In contrast to the previous scheme, in this case it does matter
according to which distribution Ri is chosen. We make the assumption that all initial
ranks are chosen according to a similar distribution. In particular, we fix a continuous
bijective function F : [0, 1] → [0, 1], and for all integers 1 ≤ k ≤ n, we let

P(Ri ≤ k) = F

(
k

n

)
.

Thus, F represents the limit, for n going to infinity, of the cumulative distribution
functions of the variables Ri. To simplify the calculations while exploring a wide array
of possibilities for F , we assume F to be of the form

F (x) = xs, where s ≥ 1.

(The case 0 < s < 1 will be studied in the journal version of this paper.)

We start from a special case s = 1, where the distribution of each Ri is uniform.
We will show that this case is similar to the random labeling case with a label equal to
Ri/n. Hence, our aim is to show that the random variable r(vi, t) is sharply concentrated
around Ri. In fact, r(vi, t)−r(vi, i) is the sum of the differences r(vi, j)−r(vi, j−1) = Xj ,
i+1 ≤ j ≤ t. If the differences are independent, then the Chernoff bounds are very useful.
When the differences are not independent but there is a large degree of independence,
results can be often obtained by using large deviation inequalities for corresponding
martingales. It is exactly the case here.

Our proofs use the supermartingale method of Pittel et al. [7], as described in [11,
Corollary 4.1]. We need the following lemma.

Lemma 4.1. Let G0, G1, . . . , Gn be a random process and Xt a random variable de-
termined by G0, G1, . . . , Gt, 0 ≤ t ≤ n. Suppose that for some real β and constants
γt,

E(Xt −Xt−1 | G0, G1, . . . , Gt−1) < β

and
|Xt −Xt−1 − β| ≤ γt

for 1 ≤ t ≤ n. Then for all α > 0,

P
(
For some t with 0 ≤ t ≤ n : Xt −X0 ≥ tβ + α

) ≤ exp
(
− α2

2
∑n

j=1 γ2
t

)
.

Lemma 4.2. Suppose that vertex v obtained an initial rank R ≥ √
n log2 n. Then, wep

r(v, t) = R(1 + O(log−1/2 n)) to the end of its life.

Proof. Note that r(v, t+1)−r(v, t) = −1 (conditionally on the fact that v is not deleted
at time t+1) with probability (r(v, t)−1)(n−r(v, t))/(n−1)n and r(v, t+1)−r(v, t) = 1
with probability (n− r(v, t))r(v, t)/(n− 1)n. Thus,

β = E(r(v, t + 1)− r(v, t) | r(v, t)) = O(1/n).

Clearly, the rank can change by at most one (γt = 1) so we can use Lemma 4.1 with
α =

√
n log3/2 n to get that wep r(v, t) = R(1+O(log−1/2 n)) during the whole life of that

vertex (note that wep v will be deleted after O(n log n) steps and R ≥ √
n log2 n). ¤
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From the previous lemma it follows that the random ranking case for s = 1 is very
similar to the random labeling case. The proof of the following theorem is the same
as the proof of the Theorem 3.1 so it is omitted. (Note that the range for k is slightly
different due to the stronger condition for the initial rank.)

Theorem 4.3. Let 0 < η < 1 and d ∈ N, log4 n ≤ k ≤ nη/2/ log3η n. Then wep

Z≥k =
(
1−O(log−1/3 n)

) η

1 + η

(
d(1− η)

k

)1/η

n.

Next, we consider the case where s > 1, but before we move to investigating the rank
of vertex v after t steps of the process, we study its age-rank. In other words, we would
like to know how many vertices have not been ‘renewed’ after t steps of the process.
For this, we use the differential equations method [11]. Without loss of generality, we
can assume that the vertex was born at time 0. It is clear that a(v, 0) = n and a(v, t),
t > 0, is a random variable, which in time step t + 1 decreases by one precisely when
vertex u for which a(u, t) < a(v, t) is deleted. So, working in the conditional space under
consideration, we obtain

E(a(v, t + 1)− a(v, t) | Gt) =
a(v, t)− 1

n− 1
.

Defining a real function z(x) to model the behaviour of a(v, xn)/n, the above relation
implies the following differential equation

z′(x) = −z(x) (1)

with the initial condition z(0) = 1.
The general solution is z(x) = exp(−x + C), C ∈ R and the particular solution is

z(x) = exp(−x). This suggests that a random variable a(v, t) should be close to a
deterministic function n exp(−t/n). We will show that it represents the “shape” of a
typical process.

Theorem 4.4. Let a(v, t) be defined as above. Then wep, for every t in the range
0 ≤ t ≤ tf = 1

2n log n− 2n log log n, we have

a(v, t) = n exp(−t/n)(1 + O(log−1/2 n)) (2)

conditional upon the vertex v surviving until time tf .

Proof. We transform a(v, t) into something close to a martingale. Consider the following
real-valued function

H(a(v, t), t) = log a(v, t) + t/n (3)

and the stopping time

T = min{t ≥ 0 : a(v, t) <
√

n log2 n/2 ∨ t = tf} .

(A stopping time is any random variable T with values in {0, 1, . . . } ∪ {∞} for which
it is determined whether T = t̂ for any time t̂ from knowledge of the process up to and
including time t̂.)

Let wt = (a(v, t), t), and consider the sequence of random variables (H(wt) : 0 ≤
t ≤ tf ). Note that the second-order partial derivatives of H with respect to a(v, t) and
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t are O(1/a(v, t)2) = O(1/n log4 n), provided T > t. Therefore, with i ∧ T denoting
min{i, T}, we have

H(w(t+1)∧T )−H(wt∧T )

= (w(t+1)∧T −wt∧T ) · grad H(wt∧T ) + O(1/n log4 n) . (4)

Observe also that,

E(wt+1 −wt | Gt) · grad H(wt)

=
(
−a(v, t)− 1

n− 1
, 1

)
· grad H(wt) = O(1/a(v, t)n) = O(1/n3/2 log2 n),

provided T > t, since H was chosen so that H(w) is close to a constant along every
trajectory w of the differential equation (1).

Taking the expectation of (4) conditional on Gt∧T , we obtain that

E(H(w(t+1)∧T )−H(wt∧T )|Gt∧T ) = O(1/n log4 n) .

From (4), noting that grad H(wt) = (O(1/a(v, t)), 1/n), and using the fact that the
rank changes by at most one in each step,

|H(w(t+1)∧T )−H(wt∧T )| = O(1/a(v, t∧T ))+O(1/n)+O(1/n log4 n) = O(1/
√

n log2 n) .

Now we may apply Lemma 4.1 to the sequence (H(wt∧T ) : 0 ≤ t ≤ tf ), and sym-
metrically to (−H(wt∧T ) : 0 ≤ t ≤ tf ), with α = 1/ log1/2 n, β = O(1/n log4 n), and
γt = O(1/

√
n log2 n) to show that wep

|H(wt∧T )−H(wt0)| = O(log−1/2 n).

As H(w0) = log n, this implies from the definition (3) of the function H, that wep
equation (2) holds for every 0 ≤ t ≤ T .

To complete the proof we need to show that wep, T = tf . The events asserted by
(2) hold with this probability up until time T , as shown above. Thus, in particular,
wep a(v, T ) = (1 + o(1))n exp(−T/n) > (1 + o(1))

√
n log2 n which implies that T = tf

wep. ¤

Exactly the same approach can be used to study the rank of vertex after t steps of
the process, given that its initial rank is equal to R. We present a sketch of the proof
only.

Theorem 4.5. Suppose that a vertex v obtained an initial rank r(v, 0) = R < (1 −
1/
√

n log2 n)n at time 0. Then wep, for every t > 0 conditional upon the vertex v
surviving until time t

r(v, t) = n

(((
R

n

)1−s

− 1

)
e(s−1)t/n + 1

) 1
1−s

(1 + O(log−1/2 n))

provided

n

(((
R

n

)1−s

− 1

)
e(s−1)t/n + 1

) 1
1−s

≥ √
n log2 n .
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Proof. Defining a real function z(x) to model the behaviour of r(v, xn)/n, we get z′(x) =
−z(x) + z(x)s with the initial condition z(0) = R/n. The general solution is z(x) =
(Ce(s−1)x + 1)1/(1−s), C ∈ R and the particular solution is

z(x) =

(((
R

n

)1−s

− 1

)
e(s−1)x + 1

) 1
1−s

.

¤

Now we are ready to state the main theorem in this section. The proof is rather
straightforward but again we omit the details in this extended abstract.

Theorem 4.6. Let 0 < η < 1 and d ∈ N, log4 n ≤ k ≤ nη/2/ log3η n. Then wep

Z≥k = (1 + o(1))
(

d(1− η)
k(1 + η)

)1/η

n.

Proof. Consider vertices vi (i = xn) and vj (j = yn) with the age-ranks a(vi, L) = i
and a(vj , L) = j, respectively. Suppose that vi obtained an initial rank of R. By
Theorem 4.4, wep vertices vi and vj were born (1 + o(1))n log(1/x) and, respectively,
(1 + o(1))n log(1/y) steps ago. By Theorem 4.5, wep vi had the following rank at that
time

n

(((
R

n

)1−s

− 1

)(y

x

)s−1
+ 1

) 1
1−s

(1 + O(log−1/2 n)).

Thus,

Edeg(vi, L) = O(d)+(1+O(log−1/2 n))d(1−η)
∫ 1

x

(((
R

n

)1−s

− 1

)(y

x

)s−1
+ 1

) −η
1−s

dy.

If x+R/n = Ω(1), then the expected degree is a constant and the degree is smaller than
log n wep. Otherwise it simplifies to

Edeg(vi, L) = (1 + O(log−1/2 n))d(1− η)

((
R

n

)1−s

− 1

) −η
1−s

x−η

∫ 1

x
yηdy

= (1 + O(log−1/2 n))
d(1− η)
1 + η

((
R

n

)1−s

− 1

) −η
1−s (

x−η − x
)
.

Therefore, we get a threshold R0 = R0(k, x) on the initial rank for heaving degree at
least k ≥ log4 n, namely,

R0(k, x) = n

(
d(1− η)
k(1 + η)

(
x−η − x

) 1−s
η + 1

) 1
1−s

.
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Finally, one can show that the expected number of vertices of degree at least k is
asymptotic to

n∑

i=1

(
R0(k, i/n)

n

)s

= (1 + o(1))n
∫ 1

0

(
d(1− η)
k(1 + η)

(
x−η − x

) 1−s
η + 1

) s
1−s

dx

= (1 + o(1))
(

d(1− η)
k(1 + η)

)1/η

n

∫ ∞

0

(
xs−1 + 1

) s
1−s dx

= (1 + o(1))
(

d(1− η)
k(1 + η)

)1/η

n.

(The antiderivative of (xs−1 + 1)
s

1−s is x(xs−1 + 1)
1

1−s .) The assertion follows from the
Chernoff bound.

¤
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