
CLEANING RANDOM GRAPHS WITH BRUSHES

PAWE L PRA LAT

Abstract. A model for cleaning a graph with brushes was re-
cently introduced. In this paper, we consider the minimum num-
ber of brushes needed to clean a random graph G(n, p = d/n) in
this model, the so-called brush number. We show that the brush
number of a random graph on n vertices is asymptotically almost
surely (a.a.s.) dn

4
(1+o(1)) if the average degree is tending to infin-

ity with n. For a constant d > 1, various upper and lower bounds
are studied. For d ≤ 1, we show that the number of brushes needed
is a.a.s. n

4
(1−exp(−2d))(1+o(1)) and compute the probability that

it attains its natural lower bound.

1. Introduction

The cleaning model, introduced in [4, 5], is a combination of the chip-
firing game and edge-searching on a simple finite graph. Initially, every
edge and vertex of a graph is dirty and a fixed number of brushes start
on a set of vertices. At each step, a vertex v and all its incident edges
which are dirty may be cleaned if there are at least as many brushes
on v as there are incident dirty edges. When a vertex is cleaned, every
incident dirty edge is traversed (that is, cleaned) by one and only one
brush, and brushes cannot traverse a clean edge. See Figure 1 for an
example of this cleaning process. The initial configuration has only 2
brushes, both at a. The solid edges are dirty and the dotted edges are
clean. The circle indicates which vertex is cleaned next.

The assumption in [5], and taken here, is that a graph is cleaned
when every vertex has been cleaned. If every vertex has been cleaned,
it follows that every edge has been cleaned. It may be that a vertex v
has no incident dirty edges at the time it is cleaned, in which case no
brushes move from v. Although this viewpoint might seem unnatural,
it simplified much of the analysis in [5].

In [1, 6], the minimum number of brushes needed to clean d-regular
graphs in this model, focusing on the asymptotic number for random
d-regular graphs, was considered. A degree-greedy algorithm was used
to clean a random d-regular graph on n vertices (with dn even) and

Research partially supported by grants from NSERC and MITACS.
1

2 PAWE L PRA LAT

dc

b a

dc

b a

dc

b a

dc

b a

dc

b a

2 brushes at a 1 brush at b
1 brush at c

2 brushes at c
1 brush at d
1 brush at c

1 brush at d
1 brush at c

Figure 1. An example of the cleaning process for graph G.

the differential equations method was used to find the (asymptotic)
number of brushes needed to clean a random d-regular graph using
this algorithm (for fixed d).

In this paper, we are interested in the asymptotic number of brushes
needed to clean a binomial random graph. In Section 2, we give a
definition of the model we study. In Section 3, we investigate dense
graphs for which the average degree is growing with the size of a graph;
an asymptotic almost sure value of the brush number is given. In
Section 4, we deal with sparse graphs. If the average degree is greater
than one, then various upper and lower bound are provided; otherwise
an asymptotic almost sure value can be computed.

2. Definitions

The following cleaning algorithm and terminology was introduced
in [5].

Formally, at each step t, ωt(v) denotes the number of brushes at
vertex v (ωt : V → N∪{0}) and Dt denotes the set of dirty vertices. An
edge uv ∈ E is dirty if and only if both u and v are dirty: {u, v} ⊆ Dt.
Finally, let Dt(v) denote the number of dirty edges incident to v at
step t:

Dt(v) =

{

|N(v) ∩ Dt| if v ∈ Dt

0 otherwise.

Definition 2.1. The cleaning process P(G, ω0) = {(ωt, Dt)}T
t=0 of

an undirected graph G = (V, E) with an initial configuration of

brushes ω0 is as follows:

(0): Initially, all vertices are dirty: D0 = V ; set t := 0
(1): Let αt+1 be any vertex in Dt such that ωt(αt+1) ≥ Dt(αt+1).

If no such vertex exists, then stop the process, set T = t, return
the cleaning sequence α = (α1, α2, . . . , αT), the final set of

CLEANING RANDOM GRAPHS WITH BRUSHES 3

dirty vertices DT , and the final configuration of brushes

ωT

(2): Clean αt+1 and all dirty incident edges by moving a brush
from αt+1 to each dirty neighbour. More precisely, Dt+1 = Dt \
{αt+1}, ωt+1(αt+1) = ωt(αt+1) − Dt(αt+1), and for every v ∈
N(αt+1) ∩ Dt, ωt+1(v) = ωt(v) + 1 (the other values of ωt+1

remain the same as in ωt)
(3): t := t + 1 and go back to (1)

Note that for a graph G and initial configuration ω0, the cleaning
process can return different cleaning sequences and final configurations
of brushes; consider, for example, an isolated edge uv and ω0(u) =
ω0(v) = 1. It has been shown (see Theorem 2.1 in [5]), however, that
the final set of dirty vertices is determined by G and ω0. Thus, the
following definition is natural.

Definition 2.2. A graph G = (V, E) can be cleaned by the initial
configuration of brushes ω0 if the cleaning process P(G, ω0) returns an
empty final set of dirty vertices (DT = ∅).

Let the brush number, b(G), be the minimum number of brushes
needed to clean G, that is,

b(G) = min
ω0:V →N∪{0}

{

∑

v∈V

ω0(v) : G can be cleaned by ω0

}

.

Similarly, bα(G) is defined as the minimum number of brushes needed
to clean G using the cleaning sequence α.

It is clear that for every cleaning sequence α, bα(G) ≥ b(G) and
b(G) = minα bα(G). (The last relation can be used as an alternative
definition of b(G).) In general, it is difficult to find b(G), but bα(G)
can be easily computed. For this, it seems better not to choose the
function ω0 in advance, but to run the cleaning process in the order α,
and compute the initial number of brushes needed to clean a vertex.
We can adjust ω0 along the way

ω0(αt+1) = max{2Dt(αt+1) − deg(αt+1), 0}, (1)

for t = 0, 1, . . . , |V | − 1, since that is the number of brushes we have
to add over and above what we get for free. Indeed, at step t, vertex
αt+1 has Dt(αt+1) dirty incident edges and deg(αt+1) − Dt(αt+1) clean
incident edges. So αt+1 must have received exactly deg(αt+1)−Dt(αt+1)
brushes from neighbouring vertices. If

(deg(αt+1) − Dt(αt+1)) − Dt(αt+1) ≥ 0,

4 PAWE L PRA LAT

then αt+1 requires no additional brushes and we may set ω0(αt+1) = 0.
Otherwise, αt+1 requires an additional

Dt(αt+1) − (deg(αt+1) − Dt(αt+1)) = 2Dt(αt+1) − deg(αt+1)

brushes in order to be cleaned at step t so we set ω0(αt+1) = 2Dt(αt+1)−
deg(αt+1).

Our main results refer to the probability space G(n, p) = (Ω,F , P)
of random graphs, where Ω is the set of all graphs with vertex set
[n] = {1, 2, . . . , n}, F is the family of all subsets of Ω, and for every
G ∈ Ω

P(G) = p|E(G)|(1 − p)(
n

2
)−|E(G)| .

It can be viewed as a result of
(

n
2

)

independent coin flipping, one for
each pair of vertices, where the probability of success (that is, drawing
an edge) is equal to p (p = p(n) can tend to zero with n). We say that
an event holds asymptotically almost surely (a.a.s.) if it holds with
probability tending to 1 as n → ∞.

We use Po(λ) to denote the Poisson distribution. We write Xn −→D Z
if Xn converges in distribution to Z, that is, P(Xn ≤ x) → P(Z ≤ x)
for every real x that is a continuity point of P(Z ≤ x). The base of all
logarithms is e.

3. Dense case

In this section we consider a brush number for a random graph
G(n, p) for which the average degree is growing with the size of a graph.
We state main result of this section below.

Theorem 3.1. For G ∈ G(n, p), p = p(n) = ω(n)/n (ω(n) is any
function tending to infinity with n) a.a.s.

b(G) =
pn2

4
(1 + o(1)) .

We consider an upper and lower bound independently in the next
subsections.

3.1. Upper bound. The following result provides an upper bound for
the brush number of a general graph. Theorem 3.2 has been proved
in [1, Theorem 3.7] but, since the proof is short, we present it here for
completeness.

Theorem 3.2 ([1]).

b(G) ≤ |E|
2

+
|V |
4

− 1

4

∑

v∈V (G),deg(v) is even

1

deg(v) + 1

CLEANING RANDOM GRAPHS WITH BRUSHES 5

for any graph G = (V, E).

Proof. Let π be a random permutation of the vertices of G taken with
uniform distribution. We clean G according to this permutation to
get the value of bπ(G) (note that bπ(G) is a random variable now).
For a vertex v ∈ V , it follows from (1) that we have to assign to v
exactly X(v) = max{0, 2N+(v)− deg(v)} brushes in the initial config-
uration, where N+(v) is the number of neighbors of v that follow it in
the permutation (that is, the number of dirty neighbours of v at the
time when v is cleaned). The random variable N+(v) attains each of
the values 0, 1, . . . , deg(v) with probability 1/(deg(v)+ 1); indeed, this
follows from the fact that the random permutation π induces a uni-
form, random permutation on the set of deg(v) + 1 vertices consisting
of v and its neighbors. Therefore the expected value of X(v), for even
deg(v), is

deg(v) + (deg(v) − 2) + · · · + 2

deg(v) + 1
=

deg(v) + 1

4
− 1

4(deg(v) + 1)
,

and for odd deg(v) it is

deg(v) + (deg(v) − 2) + · · ·+ 1

deg(v) + 1
=

deg(v) + 1

4
.

Thus, by linearity of expectation,

Ebπ(G) = E

(

∑

v∈V

X(v)

)

=
∑

v∈V

EX(v)

=
|E|
2

+
|V |
4

− 1

4

∑

v∈V (G),deg(v) is even

1

deg(v) + 1
,

which means that there is a permutation π0 such that b(G) ≤ bπ0
(G) ≤

Ebπ(G) and the assertion holds. �

For G ∈ G(n, p), p = p(n) = ω(n)/n, let X = |E(G)| (X is a random
variable). The expected number of edges is

EX =

(

n

2

)

p =
nω(n)

2
(1 + O(n−1)).

In order to finish the proof of the upper bound, we use the fact that a
sum of independent random variables with large enough expected value
is not too far from its mean (see, for example, Theorem 2.8 in [3]). From
this it follows that, if ε ≤ 3/2, then

P (|X − EX| ≥ εEX) ≤ 2 exp

(

−ε2

3
EX

)

. (2)

6 PAWE L PRA LAT

Putting ε = log n/
√

nω(n) we get that a.a.s. X ≤
(

1+ ε
)

EX and thus
a.a.s.

b(G) ≤ pn2

4

(

1 + O(ε)
)

=
pn2

4
(1 + o(1))

by Theorem 3.2.

3.2. Lower bound. A lower bound for random graphs can be obtained
as follows. By [5, Theorem 3.2],

b(G) ≥ min
S⊆V,|S|=⌊n/2⌋

|E(S, V \ S)| , (3)

where E(S, V \S) is the set of all edges between S and its complement.
The proof is a simple corollary of the fact that the minimum obtained
in (3) is a lower bound on the number of edges going from the first ⌊n/2⌋
vertices cleaned to elsewhere in the graph. (The minimum number of
edges in a cut that splits the vertex set of a graph into two equal parts
is called its bisection width.)

Now, fix any subset of vertices S of size ⌊n/2⌋ and let Y = |E(S, V \
S)| (Y is a random variable). It is clear that

EY =
pn2

4

(

1 + O(n−1)
)

=
ω(n)n

4

(

1 + O(n−1)
)

.

Using (2) with ε = ω(n)−1/3 we get that Y ≥ (1 − ε)pn2/4 with prob-
ability exp(−Ω(ω(n)1/3n)) = o(2−n). Thus, we can use the Stirling’s
formula (n! =

√
2πn(n/e)n(1 + o(1))) to show that the expected num-

ber of sets S with less than (1 − ε)pn2/4 edges going from S to its
complement is

(

n

⌊n/2⌋

)

· o(2−n) = Θ(2n/
√

n) · o(2−n) = o(1).

By Markov’s inequality, we get an asymptotically almost sure lower
bound on the brush number.

4. Sparse case

Perhaps the most studied phenomenon in the field of random graphs
is the behaviour of the random graph when p = d/n for d near 1. In the
subcritical phase (that is, when p = (1 − s)/n and s = s(n) ≫ n−1/3),
a.a.s. G(n, p) consists of small trees and unicyclic components, and
thus its structure is rather easy to study. We know that the giant
component is formed from smaller ones during the so called critical
phase, where s = O(n−1/3). In the supercritical phase (that is, when
p = (1 + s)/n and s = s(n) ≫ n−1/3), a.a.s. G(n, p) consists of one
complex component of size Ω(n2/3) and some number of small trees

CLEANING RANDOM GRAPHS WITH BRUSHES 7

and unicyclic components of size o(n2/3) each. Moreover, if s = o(1),
then the size of the largest component and the number of edges in
this component are still o(n). For d > 1 a.a.s. the size of the largest
component is Θ(n) while the size of the second largest component is
O(logn). For more information about random graphs see, for example,
[3, 2].

4.1. The subcritical phase. We start our discussion from the sub-
critical phase but before we move to random structures we need some
results on the brush number for deterministic graphs.

The model presented in this paper is one where the edges are contin-
ually recontaminated, say by algae, so that cleaning is regarded as an
on-going process. Ideally, the final configuration of the brushes, after
all the edges have been cleaned, should be a viable starting configura-
tion to clean the graph again. We know that this is possible, even with
the least number of brushes.

Theorem 4.1 ([5]). The Reversibility Theorem

Given the initial configuration ω0, suppose G can be cleaned yielding
final configuration ωn, n = |V (G)|. Then, given initial configuration
τ0 = ωn, G can be cleaned yielding the final configuration τn = ω0.

When a graph G is cleaned using the cleaning process described in
Definition 2.1, each edge of G is traversed exactly once and by exactly
one brush. Note that no brush may return to a vertex it has already
visited, motivating the following definition.

Definition 4.2. The brush path of a brush b is the path formed by
the set of edges cleaned by b.

By definition, G can be decomposed into b(G) brush paths. (Since no
brush can stay at its initial vertex in the minimal brush configuration,
these paths each have at least one edge.) Thus, the minimum number
of paths into which a graph G can be decomposed yields a lower bound
for b(G). This is only a lower bound because some path decompositions
would not be valid in the cleaning process. For example, K4 can be
decomposed into two edge-disjoint paths, but b(K4) = 4.

Following Definitions 2.1 and 4.2, every vertex of odd degree in a
graph G will be the endpoint of (at least) one brush path. This leads to
a natural lower bound for b(G) since a graph with do odd vertices cannot
be decomposed into less than do/2 paths (see [5] for more details). Note

also that this lower bound is sharp since b(T) = do(T)
2

for any tree T :

Theorem 4.3 ([5]). For any tree T with do(T) vertices of odd degree,

b(T) = do(T)
2

.

8 PAWE L PRA LAT

There are some unicyclic graphs that need a little bit more than do/2
brushes but one can show that two additional brushes suffice to clean
any unicyclic graph.

Theorem 4.4. For any unicyclic graph G with do(G) vertices of odd
degree and dt(G) vertices on the cycle of degree at least three,

b(G) =

do(G)/2, if dt(G) ≥ 2;
do(G)/2 + 1, if dt(G) = 1;
do(G)/2 + 2 = 2, if dt(G) = 0.

Proof. Take any unicyclic graph G with cycle C = (v0, v1, . . . , vl−1 =
v0) of length l. First, let us outline a general strategy for cleaning a
vertex on the cycle before moving into three possible cases. Consider
vertex vi (0 ≤ i ≤ l − 1) of degree k + 2 (k ≥ 0) and suppose that
v(i−1) mod l is already cleaned (the same argument will hold if v(i+1) mod l

is assumed to be cleaned) – see Figure 2. Let T1, T2, . . . , Tk denote
subtrees attached to vertex vi. We clean independently k0 = ⌊(k+1)/2⌋
trees T1, T2, . . . , Tk0

such that each process finishes with one brush in
vi (note that this is possible by the Reversibility Theorem). After this
operation we have enough brushes to clean vertex vi leaving one brush
in vi if deg(vi) is odd; no brush gets stuck in vi otherwise (again, by
the Reversibility Theorem, we can clean each of the remaining trees by
cleaning vertex vi first).

Figure 2. Cleaning unicyclic graphs.

CLEANING RANDOM GRAPHS WITH BRUSHES 9

Suppose first that dt(G) ≥ 2; vertices vi and vj (i < j) have degrees
ki + 2 and kj + 2, respectively, for some nonzero values of ki, kj. We
start the cleaning process by cleaning ⌊(ki + 2)/2⌋ trees adjacent to vi

leaving ⌊(ki +2)/2⌋ brushes in vi. If deg(vi) is even, then vi is ready to
be cleaned and no brush gets stuck in vi. If deg(vi) is odd, then we need
to introduce one brush in the initial configuration (that is, ω0(vi) = 1)
to be able to clean vi. Next we clean vertices vi+1, vi+2, . . . vj−1 and then
vertices vi−1, . . . v1, v0 = vl−1, cl−2, . . . , vj+1 along the cycle. For that we
use the strategy mentioned earlier. Finally, we clean ⌈(kj − 2)/2⌉ trees
adjacent to vj , vj itself, and the rest of the graph. Since every vertex
of odd degree starts or finishes exactly one brush path, and no vertex
of even degree is the endpoint of a brush path, the trivial lower bound
of do(G)/2 for the brush number is obtained.

Suppose now that dt(G) = 1; vertex vi is the only vertex of degree
ki + 2 for some nonzero value of ki. We can clean graph G as before
but in this case, two brushes get stuck in vertex of degree 2 in the
cycle C. Thus, b(G) ≤ do(G)/2 + 1. On the other hand, at least one
vertex in the cycle must start or finish at least two brush paths so
b(G) ≥ do(G)/2 + 1 and the assertion follows.

Finally, if dt(G) = 0, G is a cycle and exactly two brushes are needed
to clean G. This completes the proof of the theorem. �

Now, we are ready to come back to random graphs.

Theorem 4.5. For G ∈ G(n, p), p = p(n) = d/n and 1 − d ≫ n−1/3

(thus, d ≤ 1 − o(1))

b(G) =
do(G)

2
+ 2X + Y

where X −→D Po(λX), Y −→D Po(λY) for

λX = −1

2
log(1 − d exp(−d)) − (d exp(−d))2

4
− d exp(−d)

2
,

and

λY =
1 − exp(−d)

2(1 − d exp(−d))
d3 exp(−2d) .

In particular, a.a.s.

b(G) =
do(G)

2
+ O(log log n) = n

1 − e−2d

4
(1 + o(1)) ,

and b(G) = do(G)/2 with probability tending to exp(−λX − λY) as
n → ∞.

10 PAWE L PRA LAT

Proof. Recall that in the subcritical phase all components are either
trees or unicyclic graphs. Thus, by Theorem 4.4 we get that

b(G) =
do(G)

2
+ 2X(G) + Y (G)

where X(G) denotes the number of components that are cycles in G
and Y (G) denotes the number of components that are unicyclic graphs
with exactly one tree attached to the cycle. Note that do(G), X(G),
and Y (G) are random variables and we can investigate an asymptotic
distribution of X(G) and Y (G).

We know that there is no component of size more than log2 n a.a.s.
It is also not difficult to see that

EX =

⌊log2 n⌋
∑

k=3

(

n

k

)

(k − 1)!

2
pk(1 − p)k(n−3)

∼
⌊log2 n⌋
∑

k=3

(d exp(−d))k

2k

=
1

2

⌊log2 n⌋
∑

k=1

(d exp(−d))k

k
− (d exp(−d))2

4
− d exp(−d)

2

∼ −1

2
log(1 − d exp(−d)) − (d exp(−d))2

4
− d exp(−d)

2
=: λX

and

EY =

⌊log2 n⌋
∑

k=3

(

n

k

)

(k − 1)!

2
pk(1 − p)(k−1)(n−3)k(1 − exp(−d))

∼ 1 − exp(−d)

2 exp(−d)

⌊log2 n⌋
∑

k=3

(d exp(−d))k

∼ 1 − exp(−d)

2 exp(−d)

(d exp(−d))3

1 − d exp(−d)

=: λY .

One can also check that, for a given r ≥ 2, the rth factorial moments of
X(G) and Y (G) tend to λr

X and λr
Y , respectively. Thus, both variables

X(G), Y (G) tend to a Poisson distribution with parameters λX , λY ,
respectively. Moreover, these two random variables are asymptotically
independent.

CLEANING RANDOM GRAPHS WITH BRUSHES 11

It is also straightforward to see that a.a.s. X(G) + Y (G) is at most,
say, log log n. Hence, in order to finish the proof, we have to estimate
the number of odd vertices. For any k = k(n) < log n, let pk denote the
probability that a given vertex has degree k. (It is known that there
are no vertices of degree more than log n a.a.s.) It is clear that

pk =

(

n − 1

k

)

pk(1 − p)n−1−k =
dk

k!
e−d(1 + o(1)) . (4)

Thus, the expected number of odd vertices is equal to

Edo(G) = n
∑

1≤k<log n,k is odd

pk

= (1 + o(1))ne−d
∑

k,k is odd

dk

k!

= (1 + o(1))ne−d ed − e−d

2

= (1 + o(1))n
1 − e−2d

2
.

It is also not difficult to show that do(G) is well concentrated around
its expectation which finishes the proof of the theorem. �

As we already mentioned, if p < (1 + o(1))/n, then the size of the
giant component as well as the number of edges in this component are
o(n). So we can extend the previous theorem to the wider range of p
(since adding one edge to the graph can increase the brush number by
at most one) containing the critical phase and the ‘early’ supercritical
phase, namely, it can be shown that b(G) = (1 + o(1))n(1 − e−2d)/4
for p < (1 + o(1))/n. In Figure 3(a), the values of b(G)/n have been
presented for d-values between 0 and 1.

Finally, in Figure 3(b), we present three graphs: the first one (from
the top) is the probability that there is no cycle in G(n, d/p); the second
one shows the probability that there is no unicyclic graph with exactly
one tree; the third one expresses the probability that the brush number
attains its trivial lower bound, that is, b(G) = do(G)/2.

4.2. The supercritical phase. In this subsection, we consider a ran-
dom graph G(n, p = d/n) for d > 1. For this range of the parameter
p, we can determine the approximate size of the giant component as
well as the structure of the graph formed by deleting it. It is known
that the size of the giant component is a.a.s. cdn+ o(n) where cd is the
unique solution to

c + e−dc = 1 , (5)

12 PAWE L PRA LAT

0

0.05

0.1

0.15

0.2

0.2 0.4 0.6 0.8 1

x

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.2 0.4 0.6 0.8 1

d

(a) b(G)/n for 0 ≤ d ≤ 1 (b) P(b(G) = do(G)/2)

Figure 3. Behaviour of the brush number in the sub-
critical phase.

and the graph formed by deleting the giant component is essentially
equivalent to G(n′, p′), where n′ = (1 − cd + o(1))n and p′ = d/n =
(d(1 − cd + o(1))/n′. (Note that d(1 − cd) < 1 so, indeed, a.a.s. all
other components are of order O(logn).) In Figure 4(a), the numerical
values of cd have been presented for d-values between 1 and 5.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x

(a) Size of the giant component (b) Upper bounds on b(G)/dn

Figure 4. Behaviour of the brush number in the super-
critical phase.

The knowledge about the size of the giant component helps us to get
a stronger upper bound (numerical one) but we present also an exact
formula which works well for relatively large values of d.

Theorem 4.6. For G ∈ G(n, p), p = p(n) = d/n and d > 1 a.a.s.

b(G) ≤ n

4

(

d + 1 − 1 − e−2d

2d

)

(1 + o(1))

CLEANING RANDOM GRAPHS WITH BRUSHES 13

and

b(G) ≤ n

4

(

1 + dcd(2 − cd) − e−d(2−cd) +
e−2d − e−2d(1−cd)

2d

)

(1 + o(1)) .

We give a graph of both upper bounds of b(G)/dn in Figure 4(b).

Proof. Using (2), we can show that the total number of edges is well
concentrated around dn/2. Thus, from Theorem 3.2 (see also (4)) it
follows that

b(G) ≤ |E|
2

+
|V |
4

− 1

4

∑

v∈V (G),deg(v) is even

1

deg(v) + 1

=
n

4

(

d + 1 −
∑

k,k is even

1

k + 1
· dk

k!
e−d

)

(1 + o(1))

=
n

4

(

d + 1 − e−d

d

∑

k,k is odd

dk

k!

)

(1 + o(1))

=
n

4

(

d + 1 − 1 − e−2d

2d

)

(1 + o(1)) .

In order to get a better (but numerical) upper bound we can use
Theorem 3.2 one more time to get a bound on the number of brushes
needed to clean the giant component and give an asymptotically almost
sure value for small components.

Similar calculations to ones we had before (see (4)) can be used to
show that the probability a given vertex outside the giant component
has degree k is equal to

p′k =
(d(1 − cd))

k

k!
e−d(1−cd)(1 + o(1)) . (6)

Thus, the total number of brushes needed to clean all small components
is equal to

(1 + o(1))
1

2
(1 − cd)n

∑

1≤k<log n,k is odd

p′k

= (1 + o(1))
1

2
e−dcdne−d(1−cd)

∑

k,k is odd

(d(1 − cd))
k

k!

= (1 + o(1))
1

2
ne−d ed(1−cd) − e−d(1−cd)

2

= (1 + o(1))
n

4

(

1 − cd − e−d(2−cd)
)

. (7)

14 PAWE L PRA LAT

Since the number of edges in the giant component is equal to

(1 + o(1))

((

n

2

)

p −
(

n′

2

)

p′
)

= (1 + o(1))
dn

2
cd(2 − cd) ,

we get an upper bound on the number of brushes needed to clean the
giant component G′ of G, namely,

b(G′) ≤ |E(G′)|
2

+
|V (G′)|

4
− 1

4

∑

v∈V (G′),deg(v) is even

1

deg(v) + 1

=
n

4

(

dcd(2 − cd) + cd −
∑

k,k is even

1

k + 1

·
(

dk

k!
e−d − (1 − cd)

(d(1 − cd))
k

k!
e−d(1−cd)

)

)

(1 + o(1))

=
n

4

(

dcd(2 − cd) + cd +
e−2d − e−2d(1−cd)

2d

)

(1 + o(1)) . (8)

In order to get a new upper bound and finish the proof, it is enough
to add together (7) and (8). �

Now, let us move to a lower bound.

Theorem 4.7. For G ∈ G(n, p), p = p(n) = d/n and d > 1 a.a.s. the
following lower bounds hold:

b(G) ≥ do(G)

2
= n

1 − e−2d

4
(1 + o(1)), (9)

b(G) ≥ n

4

(

d −
√

8d log 2
)

, (10)

b(G) ≥ dn

4
(d − td), (11)

where td is the unique solution to

(d − t) log(1 − t/d) + t = 4 log 2 .

Before we prove the theorem, we provide a graph of all three nor-
malized lower bounds (see Figure 5(a)) as well as a comparison of
normalized lower/upper bound on the brush number (see Figure 5(b)).

Proof. The first lower bound (9) is obvious and the formula has been
already derived – see proof of the Theorem 4.5.

In order to show that (10) and (11) hold, we use the same argument
as in the Subsection 3.2. The expected number of edges EY coming

CLEANING RANDOM GRAPHS WITH BRUSHES 15

0

0.05

0.1

0.15

0.2

2 4 6 8 10 12 14 16 18 20

x

0.05

0.1

0.15

0.2

0.25

0.3

10 20 30 40 50

x

(a) Lower bounds on b(G)/dn (b) Lower/upper bound on b(G)/dn

Figure 5. Behaviour of the brush number in the super-
critical phase.

from any set of n/2 vertices to its complement is dn/4. Moreover,

P(Y ≤ EY − t) ≤ exp

(

− t2

2EY

)

,

for t ≥ 0 (see Theorem 2.1 in [3]). Putting t0 = n
√

d log 2
2

we get that

P(Y ≤ EY − t0) ≤ 2−n and the expected number of sets of cardinality
n/2 with less than EY − t0 edges to its complement is tending to zero.
Now, (10) holds by the Markov’s inequality.

Finally, in order to get a better (numerical) lower bound of (11) one
can use the whole power of [3, Theorem 2.1], namely

P(Y ≤ EY − t) ≤ exp (−EY ϕ(−t/EY)) ,

where ϕ(x) = (1 + x) log(1 + x) − x, x ≥ −1. �

5. Acknowledgment

The computations presented in the paper were performed by using
MapleTM [7]. The worksheet can be found at the following address:
“http://www.mathstat.dal.ca/~pralat/”.

References

[1] N. Alon, P. Pra lat, and N. Wormald, Cleaning d-regular graphs with brushes,
SIAM Journal on Discrete Mathematics, accepted, 19pp.

[2] N. Alon and J.H. Spencer, The Probabilistic Method, Wiley, 1992 (Second
Edition, 2000).

[3] S. Janson, T. Luczak and A. Ruciński, Random Graphs, Wiley, New York,
2000.

[4] S. McKeil, Chip Firing Cleaning Processes, MSc Thesis, Dalhousie University,
2007.

16 PAWE L PRA LAT

[5] M.E. Messinger, R.J. Nowakowski, and P. Pra lat, Cleaning a Network with
Brushes, Theoretical Computer Science 399 (2008), 191–205.

[6] M.E. Messinger, R.J. Nowakowski, P. Pra lat, and N. Wormald, Cleaning ran-
dom d-regular graphs with brushes using a degree-greedy algorithm, Proceed-
ings of the 4th Workshop on Combinatorial and Algorithmic Aspects of Net-
working (CAAN2007), Lecture Notes in Computer Science, Springer, 2007,
13–26.

[7] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter,
J. McCarron, and P. DeMarco, Maple 10 Programming Guide, Maplesoft,
Waterloo ON, Canada, 2005.

Department of Mathematics and Statistics, Dalhousie University,

Halifax NS, Canada B3H 3J5

E-mail address : pralat@mathstat.dal.ca

