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Abstract. The World Wide Web may be viewed as a graph each
of whose vertices corresponds to a static HTML web page, and
each of whose edges corresponds to a hyperlink from one web page
to another. Recently there has been considerable interest in using
random graphs to model complex real-world networks to gain an
insight into their properties. In this paper, we study a general-
ized version of the protean graph (a random model of the ‘web
graph’) in which the degree of a vertex depends on its age as well
as its rank. Classic protean graphs can be seen as a special case
of the rank-based approach where vertices are ranked according to
age. Here, we investigate graph generation models based on other
ranking schemes that also lead to graphs with a power law degree
distribution. The main aim of this paper is to study the behaviour
of the protean process near the connectivity threshold.

1. Introduction

Recently many new random graphs models have been introduced and
analyzed by certain common features observed in many large-scale real-
world networks such as the ‘web graph’ (see, for instance, the book [1]).
The web may be viewed as a directed graph whose nodes correspond
to static pages on the web, and whose arcs correspond to links between
these pages.

One of the most characteristic features of this graph is its degree
sequence. Broder et al. [2] noticed that the distribution of degrees fol-
lows a power law: the fraction of vertices with degree k is proportional
to k−γ, where γ is a constant independent of the size of the network
(more precisely, γ ≈ 2.1 for in-degrees, γ ≈ 2.7 for out-degrees). These
observations suggest that the web is not well modeled by traditional
random graph models such as Gn,p (see, for instance [5]).

ÃLuczak and the author of this paper introduced in [7] another ran-
dom graph model of the undirected ‘web graph’: the protean graph

The author is supported by MITACS and NSERC. This work is part of the MI-
TACS project Modelling and Mining of Networked Information Spaces (MoMiNIS)..

1



2 PAWEÃL PRAÃLAT

Pn(d, η), which is controlled by two additional parameters (d ∈ N and
0 < η < 1). The major feature of this model is that older vertices are
preferred when joining a new vertex into the graph. In [7] it is proved
that the degrees of the Pn(d, η) are distributed according to the power
law and the behaviour near the connectivity threshold is studied. The
author of this paper showed also in [9] that the protean graph Pn(d, η)
asymptotically almost surely (a.a.s.) has one giant component, con-
taining a positive fraction of all vertices, whose diameter is equal to
Θ(log n). (See also [11] where the growing protean graphs are studied.)

Classic protean graphs can be viewed as a special case of the rank-
based approach where vertices are ranked according to age. The gen-
eral approach was first proposed by Fortunato, Flammini and Menczer
in [3], and the occurrence of a power law was postulated based on sim-
ulations (Janssen and the author of this paper provided rigorous proofs
in [6]). In this approach, the vertices are ranked from 1 to n according
to some ranking scheme (so the vertex with highest degree has rank 1,
etc.), and the link probability of a given vertex is proportional to its
rank, raised to the power −η for some η ∈ (0, 1); we will refer to η as
the attachment strength. (Negative powers are chosen since a low value
for rank should result in a higher link probability.)

It has been shown that protean graphs with rank-based attachment
lead to power law graphs (with the exponent 1 + 1/η) for a variety
of different ranking schemes [7], [9], [10]. These results suggest an
explanation for the power law degree distribution often observed in real-
life networks such as the web graph, protein interaction networks, and
social networks. The growth of such networks can be seen as governed
by a rank-based attachment scheme, based on a ranking scheme that
can be derived from a number of different factors such as age, degree,
or fitness. The exponent of the power law is independent of these
factors, but is rather a consequence of the attachment strength. In
addition, rank-based attachment accentuates the difference between
higher ranked vertices: the difference in link probability between the
vertices ranked 1 and 2 is much larger than that between the vertices
ranked 100 and 101. This again corresponds to our intuition of what
constitutes a credible mechanism for link attachment.

In this paper, we study a ranking scheme where an external prestige
label for each vertex is given and vertices are ranked according to their
prestige label. Another approach is to assign an initial rank to each
vertex according to a given distribution. If the distribution is uniform,
then the situation is very similar to the one described previously, and
vertices with initial rank R exhibit behaviour as if they had received fit-
ness R/n. We investigate how the threshold of connectivity is affected
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by the dependence structure of the protean graph, and characterize
the limit distribution of the ‘recovery time’ for connectivity near the
connectivity threshold.

Finally, let us mention that protean graphs are interesting not only as
models of the web graphs, but they are also attractive from a theoretical
point of view: they have a very rich dependence structure, and, unlike
many other models of random graphs, Pn(d, η) can be viewed as the
stationary distribution of the protean process.

2. Definitions

In this section, we formally define the graph generation model based
on rank-based attachment. The model produces a sequence {Gt}∞t=0 =
{(Vt, Et)}∞t=0 of undirected graphs on n vertices, where t denotes time.
Our model has two fixed parameters: initial degree d ∈ N , and at-
tachment strength η ∈ (0, 1). At each time t, each vertex v ∈ Vt has
rank r(v, t) ∈ [n] (we use [n] to denote the set {1, 2, . . . , n}). In order
to obtain a proper ranking, the rank function r(·, t) : Vt → [n] is a
bijection for all t, so every vertex has a unique rank. In agreement
with the common use of the word ‘rank’, high rank refers to a vertex v
for which r(v, t) is small: the highest ranked vertex is ranked number
one, so has rank equal to 1; the lowest ranked vertex has rank n. The
initialization and update of the ranking is done according to a ranking
scheme. Various ranking schemes can be considered; we first give the
general model, and then list the ranking schemes.

Let G0 = (V0, E0) be any graph on n vertices and r0 = r(·, 0) : V0 →
[n] any initial rank function. (For random labeling scheme we take any
function l : V0 → (0, 1) and the initial rank function is a function of
l; for degree scheme r0 = r0(G0).) For t ≥ 1 we form Gt from Gt−1

according to the following rules:

• Choose uniformly at random a vertex u ∈ Vt−1, then delete u
together with all edges incident to it.

• Add a new vertex vt together with d edges from vt to exist-
ing vertices chosen randomly with weighted probabilities. The
edges are added in d substeps. In each substep, one edge is
added, and the probability that v is chosen as its endpoint (the
link probability), equals

r(v, t− 1)−η

∑n
i=1 i−η

=
1− η

n1−η + O(1)
r(v, t− 1)−η.

• Update the ranking function r(·, t) : Vt → [n] according to the
ranking scheme.
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Our model allows for loops and multiple edges; there seems no reason
to exclude them. However, there will not in general be very many of
these, so excluding them can be shown not to affect our conclusions in
any significant way.

We now define the different ranking schemes.

• Ranking by age: The vertex added at time t obtains an initial
rank n; its rank decreases by one each time a vertex with smaller
rank is removed.

• Ranking by inverse age: The vertex added at time t obtains
an initial rank 1; its rank increases by one each time a vertex
with higher rank is removed.

• Ranking by random labeling: The vertex added at time
t obtains a label l(vt) ∈ (0, 1) chosen uniformly at random.
Vertices are ranked according to their labels: if l(vi) < l(vj),
then r(vi, t) < r(vj, t). Ties are broken by age.

• Random ranking: The vertex added at time t obtains an
initial rank Rt which is randomly chosen from [n] according to
a prescribed distribution. Formally, let F : [0, 1] → [0, 1] be any
cumulative distribution function. Then for all k ∈ [t],

P(Rt ≤ k) = F (k/t).

• Ranking by degree: After each time step t, vertices are
ranked according to their degrees in Gt, and ties are broken by
age. Precisely, if deg(vi, t) < deg(vj, t) then r(vi, t) < r(vj, t),
and if deg(vi, t) = deg(vj, t) then r(vi, t) < r(vj, t) if i < j.

The behaviour and state of a vertex clearly depends on its rank but
also on its age relative to the ages of the other vertices. We use a(·, t)
to denote the rank of the age of a vertex and r(·, t) for the ranking used
in a given scheme.

We will use the stronger notion of wep in favour of the more com-
monly used a.a.s., since it simplifies some of our proofs. We say that
an event holds with extreme probability (wep), if it holds with proba-
bility at least 1 − exp(−Θ(log2 n)) as n → ∞. Thus, if we consider a
polynomial number of events that each holds wep, then wep all events
hold. To combine this notion with asymptotic notations such as O()
and o(), we follow the conventions in [12].

In this paper, we focus on ranking by random labeling and random
ranking with uniform distribution, that is, F (x) = x. For the random
ranking scheme, it is enough to wait L steps for all vertices to be ‘re-
newed’ (for the random labeling case we have to wait twice as long: the
first round is needed to have labels distributed uniformly at random;
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during the second round the process ‘forgets’ about the initial graph).
After all vertices have been renewed, the protean process is the Markov
chain that is in the stationary distribution (that is, the distribution de-
termined by Gt on the set of all ordered graphs on n vertices is identical
for all t). By the coupon collector problem, a.a.s. L = n(log n + ω(n))
where ω(n) is any function tending to infinity with n (for random la-
beling scheme, clearly L = 2n(log n + ω(n)) a.a.s.). Furthermore, this
distribution does not depend on the choice of G0 and r0. The random
graph GL corresponding to this distribution is called a protean graph
Pn(d, η).

If n·l(vi) > log3 n in the random labeling scheme, then the Chernoff’s
inequality (see, for example, Theorem 2.8 in [5]) can be used to show

that wep r(vi, t) = l(vi)n + O(
√

l(vi)n log n) = l(vi)n(1 + o(1)) during
the whole period of length L = O(n log n). If the rank of the new
vertex vi, Ri = r(vi, i), is chosen uniformly at random from [n], we
get similar behaviour to the random labeling case with a label equal
to Ri/n. In [10] the supermartingale method of Pittel et al. [8], as
described in [13, Corollary 4.1] has been used to show the following
useful lemma:

Lemma 2.1 ([10]). Suppose that vertex v obtained an initial rank R ≥√
n log2 n. Then, wep r(v, t) = R +

√
n log3/2 n = R(1 + o(1)) to the

end of its life.

Note that there is no difference between these two approaches from
the point of view of this paper. Therefore, in the rest of the note,
{Gt}∞t=0 is assumed to be a graph sequence generated by the rank-
based attachment model, with random ranking scheme with uniform
distribution (less ‘rounded’ scheme). Parameters d and η are assumed
to be the initial degree and attachment strength parameters of the
model as defined above.

3. Threshold for connectivity

In this section we study the connectivity of Pn(d, η) to illustrate sim-
ilarities and differences both in results and methods between protean
graphs and the standard binomial random graph model Gn,p.

Let ρn(d, η) denote the probability that Pn(d, η) is connected. Before
we move to new results let us first discuss the simplest case η = 0.
Then, all vertices have the same weight and, since the ranking scheme
does not matter, the model is equivalent to the classic protean graph.
The probability that two vertices are connected by an edge is given by

p̄(i, j) = p̂(n) = 1− (1− 1/n)d = d/n + O(d2/n2) .
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Thus, one should expect that the threshold function for connectivity is
the same as in the binomial random graph model G(n, p̂). Theorem 3.1
proved in [7] shows that it is roughly the case but the dependence struc-
ture of Pn(d, 0) influences the second term of the threshold function.

Theorem 3.1 ([7]). Let d = d(n) = log n− 1
2
log log n + a(n), a(n) =

o(log log n). Then

lim
n→∞

ρn(d, 0) =





1 if a(n) →∞
exp

(−
√

π/2e−a
)

if a(n) → a

0 if a(n) → −∞ .

In the case η ∈ (0, 1) the threshold for the connectivity is affected
by a constant factor.

Theorem 3.2. Let η ∈ (0, 1), d = d(n) = log n
1−η

− 2 log log n
1−η

+ a(n),

a(n) = o(log log n). Then

lim
n→∞

ρn(d, η) =





1 if a(n) →∞
exp

(
−1−η

η
e−a(1−η)

)
if a(n) → a

0 if a(n) → −∞ .

Proof. Let vi denote a vertex with a(vi, n) = i = xn and q+(vi) (q−(vi))
denote the probability that vi has no neighbour u with a(u, n) > i
(a(u, n) < i, respectively). Suppose that vi obtained an initial rank
R ≥ √

n log2 n. Then using Lemma 2.1, the probability in question is
equal to

q+(vi | R) =
n∏

j=i+1

(
1− 1− η

n1−η
(R + O(

√
n log3/2 n))−η

)d

= exp
(
−d(1− η)(1− x)(R/n + O(n−1/2 log3/2 n))−η

)
.

Since R is taken uniformly at random from [n], we get

q+(vi) =

∫ 1

0

exp
(
−d(1− η)(1− x)(l + O(n−1/2 log3/2 n))−η

)
dl

=

∫ n−1/4

0

exp
(
−d(1− η)(1− x)(l + O(n−1/2 log3/2 n))−η

)
dl

+

∫ 1

n−1/4

exp
(−d(1− η)(1− x)l−η(1 + O(n−1/5))

)
dl

= (1 + o(1))

∫ 1

0

exp
(−d(1− η)(1− x)l−η(1 + O(n−1/5))

)
dl.
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(Note that we cannot control vertices with very small initial ranks but
this does not cause a problem since for those vertices the probability
of being isolated is negligible.) Now putting A = d(1 − η)(1 − x)(1 +
O(n−1/5)) and then u = Al−η we obtain

q+(vi) = (1 + o(1))
A1/η

η

∫ ∞

A

e−uu−1−1/ηdu = (1 + o(1))
A1/η

η
Γ(−1/η, A),

where Γ(·, ·) denotes the upper incomplete gamma function. Using an
asymptotic formula for the gamma function (see, for example, [4]) we
get

q+(vi) = (1 + o(1))
A1/η

η
e−AA−1/η−1 = (1 + o(1))

exp (−d(1− η)(1− x))

ηd(1− η)(1− x)
.

(Note that an error term of (1+O(n−1/5)) in the exponent is absorbed
in (1 + o(1)).)

In order to calculate q−(vi) we use the fact that vertex vi generated
d edges at the time it was born but exactly n − i vertices that were
already in the graph at that time have been deleted. Since vertices are
being removed uniformly at random we get

q−(vi) = (1 + o(1))

(
n−d

(1−x)n−d

)
(

n
(1−x)n

) = (1 + o(1))(1− x)d.

Therefore, for the expectation of the number Yn of isolated vertices
in Pn(d, η) we have

EYn = (1 + o(1))n

∫ 1

0

q−(vxn)q+(vxn)dx

= (1 + o(1))
n

d(1− η)η

∫ 1

0

(1− x)d−1 exp (−d(1− η)(1− x)) dx.

Substituting u = d(1− η)(1− x) we get

EYn = (1 + o(1))
n

[d(1− η)]d+1η

∫ d(1−η)

0

ud−1e−udx

= (1 + o(1))
n

[d(1− η)]d+1η
γ(d, d(1− η)),

where γ(·, ·) denotes the lower incomplete gamma function. Using the
following asymptotic expansion for the incomplete gamma function (so
the error of truncation at N terms is of order at most the (N + 1)st
term)

γ(a, x) = −(1 + o(1))xae−x

∞∑

k=0

(−a)kbk(λ)

(x− a)2k+1
,
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where x = λa and a goes to infinity, 0 < λ < 1; the bk(λ)’s satisfy
b0 = 1, b1 = λ, b2 = λ(2λ + 1) and bk = λ(1 − λ)b′k−1 + (2k − 1)λbk−1

(see, for example, Section 8.11(iii) in [14]) we obtain

EYn = (1 + o(1))
n

[d(1− η)]d+1η

−[d(1− η)]de−d(1−η)

d(1− η)− d

= (1 + o(1))
n

d2η(1− η)
e−d(1−η)

= (1 + o(1))
1− η

η
e−a(1−η).

One can also check that, for a given integer r ≥ 2, the rth facto-

rial moment of Yn tends to
(

1−η
η

e−a(1−η)
)r

, so the random variable Yn

tends to a Poisson distribution and, in particular, the probability that

Pn(d, η) contains no isolated vertex tends to exp
(
−1−η

η
e−a(1−η)

)
as n

goes to infinity.
Not surprisingly, the threshold for disappearing isolated vertices is

also the threshold for connectivity. Therefore, in order to finish the
proof it is enough to show that if, say, d(n) = log n

1−η
− 3 log log n

1−η
, the

protean graph consists of one giant component and, perhaps, some
number of isolated vertices.

It is clear that at most 2k/
√

d vertices from a spanning tree of a

component of size k have degree more than
√

d. Hence, we can estimate
the probability that the vertices from a tree have no neighbours outside
this component by

(
1− (1 + o(1))

1− η

n

)d(k−2k/
√

d)(n−k)

= exp

(
−(1 + o(1))d(1− η)k

(
1− k

n

))

(note that the probability that there is an edge between vi and vj (i < j)
is minimized if vi had rank n when vj was introduced). The probability
that Pn(d, η) contains a component of size k, where 2 ≤ k ≤ (1−η)n/4,
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is bounded from above by

(1−η)n/4∑

k=2

(
n

k

)
kk−2 exp

(
−(1 + o(1))d(1− η)k

(
1− k

n

))(
(1 + o(1))

d

n1−η

)k−1

≤
(1−η)n/4∑

k=2

(ne

k

)k

kk−2 exp

(
−(1 + o(1))

(
d(1− η)k

(
1− k

n

)
+ (1− η)(k − 1) log n

))

≤
(1−η)n/4∑

k=2

exp

(
−(1 + o(1))

((
1− 1− η

4

)
k + (1− η)(k − 1)− k

)
log n

)

≤
(1−η)n/4∑

k=2

exp

(
−(1 + o(1))

(
3(1− η)

4
k − (1− η)

)
log n

)

≤ n−(1+o(1))(1−η)/2,

and tends to zero as n → ∞. (Note that the probability that there is
an edge between vi and vj (i < j) is maximized if vi had rank 1 when
vj was introduced.) It is also clear that there are no two components
each containing a positive fraction of all vertices. Indeed, the expected
number of pairs of vertex sets, each of size (1 − η)n/4, with no edge
between them is bounded from above by
(

n

(1− η)n/4

)2 (
1− (1 + o(1))

1− η

n

)d((1−η)n/4)2

= exp(O(n)−Ω(n log n)) = o(1).

Thus, by the Markov’s inequality, a.a.s. the protean graph consists of a
giant component and some number of isolated vertices, which completes
the proof of the theorem. ¤

4. Recovery time

In this section we would like to come back to the protean process
{Gt}∞t=0 = {P t

n(d, n)}∞t=0 and study an interesting (from both theoret-
ical and application point of view) property which does not have its
counterpart for the classic random graph process {G(n, p)}0≤p≤1. Let
A be a graph property such that A holds for Pn(d, η) a.a.s. but for
τ(A), defined as

τ(A) = min{t : P t
n(d, η) has not A} ,

we have P(τ(A) < ∞) = 1, that is, with probability one at some stage
of the protean process {P t

n(d, n)}∞t=0 the property A disappears for
some time. Then, the recovery time rec(A) for property A is defined
as

rec(A) = min{t > τ(A) : P t
n(d, η) has A} − τ(A) ,
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that is, rec(A) tells us how long it takes for the protean process to
regain a typical property A. Note that since A holds a.a.s., and a.a.s.
after O(n log n) steps each vertex of Pn(d, η) is renewed at least once,
rec(A) = O(n log n) a.a.s. However, typically, the recovery time is
smaller than the above universal upper bound implied by the coupon
collector problem. The following theorem estimates rec(C), the recov-
ery time for connectivity.

Theorem 4.1. Let η ∈ (0, 1) and d = a
1−η

log n, where a > 1. Then

rec(C) · a log n

n
−→D Z ,

where the random variable Z has the exponential distribution, that is,
for every z ≥ 0, P(Z ≥ z) = e−z.

Proof. The main part of the proof is to show that a.a.s. at time τ(C),
the protean graph consists of a giant component and a single isolated
vertex v of the rank w = (1 + o(1))n (note that such a rank maximizes
the probability of being isolated). Then, in order to finish the proof
it will be enough to show that a.a.s. graph becomes connected again
when a new vertex creates an edge to v.

Let us focus on any period of n log2 n steps of the protean process.
The probabilities that during that time in the process we get

• an isolated vertex of the rank w, where (w/n)−η ≤ 1 + ε,
• an isolated vertex of the rank w, where (w/n)−η > 1 + ε,
• a component of size k, 2 ≤ k ≤ 2n/3,

we denote by ρ1(ε), ρ2(ε), and ρ3, respectively. To estimate these
probabilities, let us first compute the probability ρ(i, j, t) that a vertex
vi = vxn becomes isolated at time t due to the fact that in this step we
chose the only neighbour vj of vi in the preceding graph to be deleted.
Let wi and wj denote the ranks in P t−1

n (d, η) of vi and vj, respectively.
Then, arguing as in the proof of Theorem 3.2, we may estimate ρ(i, j, t)
by

(1 + o(1))
1

n
·d1− η

n1−η
(wi + O(n1/2 log3/2 n))−η

·(1− x)d exp

(
−d(1− η)(1− x)

(wi

n
+ O(n−1/2 log3/2 n)

)−η
)

(1)
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for i < j, and

(1 + o(1))
1

n
·d1− η

n1−η
(wj + O(n1/2 log3/2 n))−η

·(1− x)d−1 exp

(
−d(1− η)(1− x)

(wi

n
+ O(n−1/2 log3/2 n)

)−η
)

(2)

for i > j.
Let ε > 0 be a positive constant. Let us denote by At(i) an event

that a vertex vi of the rank wi becomes isolated at step t of the process
and (wi/n)−η ≤ 1 + ε/4; moreover, let At =

⋃n
i=1 At(i). Events Bt(i)

and B(i) are defined in a similar way, but this time we would like to
have (wi/n)−η > 1 + ε. From (1) and (2) we get

P(At(i)) ≥ n−1+o(1)(1 + x)d exp (−d(1− η)(1− x)(1 + ε/4))

P(At(i)) ≤ n−1+o(1)(1 + x)d exp (−d(1− η)(1− x)) ,

while

P(Bt(i)) ≤ n−1+o(1)(1 + x)d exp (−d(1− η)(1− x)(1 + ε)) .

Using the same argument as in the proof of Theorem 3.2, we get

P(Bt) ≤
n∑

i=1

P(Bt(i))

≤ no(1) exp (−d(1− η)(1 + ε))

≤ n−(1+o(1))a(1+ε) . (3)

In order to estimate the probability that At holds, we can bound the
probability ρ(i, i′, j, t) that vi and vi′ become isolated at time t because
the only their neighbour vj is removed from the graph. It is clear (and
so is omitted) that for i 6= i′ the events At(i) and At(i

′) are, in a way,
‘weakly dependent’, that is,

P(At(i) ∩At(i
′)) = P(At(i))P(At(i

′))no(1).

Thus, Bonferroni’s inequality gives

P(At) = P
( n⋃

i=1

At(i)
)

≥
n∑

i=1

P(At(i))−
∑

1≤i<i′≤n

P(At(i) ∩At(i
′))

≥ no(1) exp (−d(1− η)(1 + ε/3))

≥ n−a(1+2ε/5) .
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From (3) we get immediately

ρ2(ε) ≤
n log2 n∑

t=1

P(Bt) ≤ n1−(1+o(1))a(1+ε). (4)

Creating an isolated vertex at time t1 affects the probability of creating
another isolated vertex at time t2 (t1 < t2). But, since ranks are well
concentrated by the Chernoff’s bound, it can be shown that

P(At1 ∩At2) = P(At1)P(At2)n
o(1) ,

Using Bonferroni’s inequality one more time, we get

ρ1(ε) ≥ P
( n log2 n⋃

t=1

At

)
≥ n1−a(1+ε/2). (5)

Moreover, it can also be proved that

ρ3 ≤ n1+o(1)[P(At)]
2 ≤ ρ2(ε) (6)

(since the argument is fairly standard we omit details).
Now, let us consider first na(1+3ε/4) log2 n steps of the protean process.

From (4), (5) and (6) it follows that if the graph becomes disconnected
during this period, then a.a.s. it is due to the appearance of a single
isolated vertex of rank w with (w/n)−η ≤ 1+ε. We will show that this
is indeed the case, but in order to do that we split the time interval
into a number of smaller subintervals to avoid dependent events.

Let Dk, k = 0, 1, . . . , k0, where k0 = na(1+3ε/4)−1/3, be an event
that between time-step 2kn log2 n and time-step (2k + 1)n log2 n an
isolated vertex of the rank w appears with (w/n)−η ≤ 1 + ε. Let F
be an event that every vertex was at least one time renewed in the
time period ((2k − 1)n log2 n, 2kn log2 n)), for each k = 1, . . . , k0. By
the coupon collector problem, F holds wep. Moreover, P(Dk) = ρ1(ε)
and, conditioned on F, all events Dk’s are independent. Thus, since
k0ρ1(ε) tends to infinity as n → ∞, a.a.s. at least one of Dk’s holds
by the Chernoff’s bound. Consequently, a.a.s. τ(C) = na(1+o(1)) and at
the time τ(C), the protean graph consists of a giant component and a
single isolated vertex vi0 of rank (1 + o(1))n.

The rest of the proof is straightforward. Let us consider the first
O(n/ log n) steps after the moment when the graph became discon-
nected. The probability that we renew vertex vi0 at that time tends
to zero as n → ∞ and, by the argument similar to one we used to
estimate ρ1(ε), ρ2(ε), ρ3 above, so is the probability that we create an
additional small component. Thus, the graph becomes connected if one
of the renewed vertices will choose vi0 as a neighbour. Since the rank
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of vi0 can change only slightly during O(n/ log n) steps, the probability
that for some z ≥ 0,

rec(C) ≥ z
n

a log n
= z

n

(1− η)d
,

is given by

[
1− (1 + o(1))(1− η)

d

n1−η
w−η

]z n
(1−η)d

= (1 + o(1))e−z,

and the assertion follows. ¤
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