
Polygonal Curvature

The Basic Definitions. A polygonal surface is a surface that is made out
of convex (Euclidean) polygonal regions, which match in the sense that the
intersection of two regions is either an edge or a vertex or empty. In this
course you have seen various examples of polygonal surfaces already: the
surfaces of the polyhedra we have studied, and the plane (when it has been
tiled with polygonal tiles that match in the above described manner).

Depending on the sum of the angles of the regions meeting at a vertex,
the surface may lie flat or it may curve in some way. We will now define the
polygonal curvature at every point of a polygonal surface.

Definition 1. Let S be a polygonal surface. The polygonal curvature of S
is 0 at every point of S that is in the interior of a polygonal region, or on
the interior of an edge. A finite number of polygonal regions meet at every
vertex v of S. Each of these regions has an interior angle with v as vertex.
Let s(v) be the sum of the radian measures of these interior angles. Then
the polygonal curvature of S at v is k(v) = 2π − s(v).

Example 2. If we express the plane as a polygonal surface through the
regular tiling by equilateral triangles, there are six triangles meeting at each
vertex v, so the angle sum is s(v) = 6 ∗ π3 = 2π and the curvature at v is
k(v) = 2π − 2π = 0. This is what we would have expected since the plane
is flat.

You may be a bit surprised by the fact that we set the curvature equal
to 0 along an edge, even though two regions may meet at a non-zero angle
along that edge. The reason is that if you would restrict yourself to a very
small region around a point on an edge, you could straighten things out: the
two polygonal regions meeting there could meet in a flat way. This is not
the case at a vertex if the angle sum is not 2π.

Some Familiar Examples. Calculate the polygonal curvature at each ver-
tex of the following surfaces:

(1) The icosahedron.
(2) The hexagonal tiling of the Euclidean plane.
(3) The soccer ball (the usual one, made up out of hexagons and pen-

tagons).
(4) The dodecagedron.
(5) The octahedron.

A New Surface. Create a surface in the following way. Start with nine
squares Si,j , for 1 ≤ i, j ≤ 3 and attach them to each other so that the right
vertical edge of Si,j is the left vertical edge of Si,j+1 (for j = 1 and j = 2
and all i ), and the bottom horizontal edge of Si,j is the top horizontal edge
of Si+1,j (for i = 1 and i = 2 and all j). Moreover, we also make the bottom
horizontal edge of S3,j equal to the top horizontal edge of S1,j .
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(1) Make a sketch of this surface.
(2) What is the polygonal curvature of this surface at every internal

vertex?

Now we want to further identify the left vertical edge of Si,1 with the right
vertical edge of Si,3. Note that we cannot do this in R3 unless we are allowed
to stretch our squares a bit, but it is possible to do this in R4 without
stretching, so we will not worry about that. Now we have a closed surface
again. Mathematicians call this a torus.

(1) Make a sketch of this surface.
(2) What is the polygonal curvature of this surface at every internal

vertex?

Soccer Balls. If you start with a hexagonal tiling of the plane, you can
turn it into a surface of positive curvature by replacing some hexagons by
pentagons. If you do this in a symmetric way so that every pentagon is
surrounded by hexagons and every hexagon has alternating pentagons and
hexagons along its sides, you obtain the familiar soccer ball. Note that
surfaces with positive curvature always want to close up on themselves.

If we want to create a surface with negative curvature we can start out
with the same hexagonal tiling but instead of replacing tiles by regular
pentagons, we will replace them by regular heptagons (polygons with seven
edges). This way we create a surface that has been called a hyperbolic soccer
ball.

(1) Make a supply of pentagons and hexagons with the templates pro-
vided and create a spherical soccer ball. (You may want to cut them
with some extra flaps along the edges, so that you have something
to glue along.)

(2) Make a supply of heptagons and hexagons with the templates pro-
vided and create a hyperbolic soccer ball. Make the surfaces at least
10 polygonal regions across. This will require a large supply of poly-
gons, because the surface will get extremely wavy and floppy as it
grows.

Lines and Triangles. Now we want to see what the effect of the curvature
is on the geometry of the surface. For this part you will need a very long
ruler, a piece of string and a small protractor to measure angles. (Ask for
whatever you don’t have and we will find something in the department.)
First we will see what lines or curves with shortest distance look like on
both surfaces.

(1) Lines on the spherical soccer ball
(a) Take several pairs of two points on the spherical soccer ball and

find the shortest path between them using your piece of string.
Then draw those paths on the surface of the soccer ball.
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(b) If you continue those shortest paths in the same direction (how
would you define that?) what do you get? You could think
of these resulting paths as the ”lines” of the geometry on the
soccer ball.

(c) Is it possible to make non-intersecting lines?
(d) Is it possible to make lines with a common perpendicular (i.e.,

two lines for which there is a line which intersects both of them
at a right angle)?

(2) Lines on the hyperbolic soccer ball
To draw a line on the hyperbolic soccer ball choose two points that
are far away from each other on the surface. Then pull the surface
as straight as possible between those two points and use your long
ruler to draw the line.
(a) Construct several pairs of lines that admit a common perpen-

dicular. Start by drawing a long line l on the hyperbolic soccer
ball as instructed above. Then choose another point P outside
the first line and halfway to the edge of your model. Construct
a line m through P that is perpendicular to l. Then do the same
thing again for m. Is it possible that the third line intersects l
somewhere?

(b) Experiment by doing this several times from different places. Is
it possible to create two common perpendiculars between two
lines? Write down some of your observations. How does this
geometry differ from our usual Euclidean geometry?

(c) Start with a line l and a perpendicular line m as before, with
a point P on m. Is it possible to find lines through P that are
not perpendicular to m, but that would definitely not intersect
l, even if you extended the surface indefinitely? Draw some of
those lines.

(d) Measure the smallest angle with m at which you can find a line
that doesn’t intersect l. If you would extend your surface would
you expect to find smaller angles?

Now we will explore what happens to triangles on both surfaces.

(1) Triangles on the spherical soccer ball Construct various trian-
gles on the spherical soccer ball. What can you say about the sum
of the angles in a triangle? How does it change with the size of the
triangle? Make sure that you draw the triangles in such a way that
there is enough of each angle in a polygonal so that you can measure
the angles.

(2) Triangles on the hyperbolic soccer ball Construct various tri-
angles on the hyperbolic soccer ball. What can you say about the
sum of the angles in a triangle? How does it change with the size of
the triangle? Make sure that you draw the triangles in such a way
that there is enough of each angle in a polygonal so that you can
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measure the angles.

Parallel Transport. Another way in which you can measure the effects
of curvature on a surface is by a construction called ‘parallel transport’.
Here is a description of the process. Draw a triangle 4ABC and pick a
line l through vertex A. Construct the line l1 through B such that l and
l1 make congruent corresponding angles with the line through A and B.
Then construct a line l2 through C such that l2 and l1 make congruent
corresponding angles with the line through B and C. Finally, construct a
line l3 through A such that l2 and l3 make congruent corresponding angles
with the line through C and A. Now we are interested in the angle between
l and l3.

(1) Take a flat piece of paper, and draw a Euclidean triangle 4ABC on
it. Draw a line l through A and do parallel transport. What is the
resulting angle between l and l3?

(2) Do the same experiment on a spherical soccer ball. You need to
take your triangle big enough so that it doesn’t just lie within one
polygonal region. You may need a bigger ball than the one you had
constructed. How do l and l3 compare in this case?

(3) Do the same experiment on the hyperbolic soccer ball. Again you
need to use a relatively large triangle for this experiment. How do l
and l3 compare in this case?

(4) Compare the results from the previous two parts. Did the line turn
in the same direction for both experiments?

Area and Curvature. Yet another way to detect curvature on a surface is
by considering the area of triangles and circular disks. If you want to do this
part, you need to use the polygons with the rectangular grid to construct
your soccer balls.

(1) Construct three triangles with a common angle on the surface of the
hyperbolic soccer ball. Then calculate their area by counting the
little squares inside the triangle. For complete hexagons you may
take the area to be 41.57 and for complete heptagons you may take
58.14. For the rest you need to count squares (of size 1 by 1) and
make guesses for parts of squares. For each of your triangles calculate
both the area and the angle sum. Do you see a relationship?

(2) Construct two circles with the same center, but different radii. You
can do this using a large compass or by using a piece of string with
a pencil. How does the area change when you double the radius?
How does the area change when you double the circumference?


