
Solutions to Selected Problems from the Review Sheet for the Final
Exam of MATH 1600 - Fall 2009

1. Sets and Proofs

Typical Problems. Those from the assignments, but if you like to try something new,
here are a couple more:

(1) Which of the following sets are subsets of each other:

U = {u ∈ Z|u3 ≤ 8},
X = {x ∈ Z|x2 < 5},
Y = {y ∈ R||y| < 4},
Z = {z ∈ R| z2 = 1}.

Determine for each pair whether or not they are subsets.

Solution A general comment on how you prove such statements: if one set is a
subset of another set, you need to give an argument showing that every element of
the first set is also an element of the second set; if you want to show that a given
set is not a subset of another set, you need to give an element of the first set that
is not in the second set.
U 6⊆ X, because −5 ∈ U (since (−5)3 = −125 ≤ 8), but −5 6∈ X, since (−5)2 =

25 6< 5.
U 6⊆ Y , because −5 ∈ U , but −5 6∈ Y .
U 6⊆ Z, because −5 ∈ U , but −5 6∈ Z.
X ⊆ U : it is not hard to see that all elements of X are less than or equal to 2 so

for each x ∈ X we have that x3 ≤ 23 = 8, so they are in U .
X ⊆ Y : it is not hard to see that X = {−2,−1, 0, 1, 2}, so for all x ∈ X we have

that |x| ≤ 2 < 4, so they are in Y .
X 6⊆ Z: 2 ∈ X, but 22 6= 1, so 2 6∈ Z.
Y 6⊆ U , because 0.5 ∈ Y , but not in U , because U only contains integers.
Y 6⊆ X, because 0.5 ∈ Y , but not in X, because X only contains integers.
Y 6⊆ Z, because 0.5 ∈ Y , but not in Z, because 0.52 6= 1.
Z ⊆ U , since Z = {−1, 1} and both 13 = 1 ≤ 8 and (−1)3 = −1 ≤ 8, so

−1, 1 ∈ U .
Z ⊆ X, since for each z ∈ Z, z2 = 1 < 5, so z ∈ X.
Z ⊆ Y , since for each z ∈ Z, |z| = 1 < 4, so z ∈ Y .

(2) Give a careful proof of the fact that if n is an integer such that n2 is a multiple of
5, then n is a multiple of 5.

Proof: Let n be an integer such that n2 is a multiple of 5. Suppose (toward a
contradiction) that n is not a multiple of 5. Then we can write n = 5k + r where
r is an integer with 1 ≤ r ≤ 4. And n2 = (5k + r)2 = 5k2 + 10kr + r2. Since n2

is a multiple of 5 and 5k2 + 10kr = 5(k2 + 2kr) is a multiple of 5, we conclude
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that r2 = n2 − (5k2 + 10kr) is a multiple of 5. But r ∈ {1, 2, 3, 4} and therefore
r2 ∈ {1, 4, 9, 16} which does not contain any multiples of 5. Contradiction.

We conclude that n has to be a multiple of 5.

(3) For the following statement, form its negation, and either prove that the statement
is true or prove that its negation is true: ∃x ∈ Z such that ∀n ∈ Z, x 6= n2 + 2.

Solution: The negation of this statement is ∀x ∈ Z, ∃n ∈ Z, x = n2 + 2.
The original statement is true: Take x = 1. We will show by contradiction that

∀n ∈ Z, 1 6= n2 + 2 If there were an n ∈ Z such that 1 = n2 + 2, then we would
have n2 = −1 and this is impossible. So ∀n ∈ Z, 1 6= n2 + 2, and we conclude that
∃x ∈ Z such that ∀n ∈ Z, x 6= n2 + 2.

2. Complex Numbers

Typical Problems.
• Find the real and imaginary parts of powers of complex numbers such as (1− i)21

or (1− i
√

3)−15

Solution: Let z = 1 − i. Then the argument of z is −π
4 and |z| =

√
2, so

z =
√

2e−i
π
4 . So z21 = (

√
2)21e−i

π
4
∗21 = 210

√
2ei

3π
4 = 1024

√
2(− 1√

2
+ i 1√

2
) =

1024(−1 + i) = −1024 + 1024i.
Let u = 1 − i

√
3. Then |u| =

√
1 + 3 = 2, and the argument of u is −π

3 , so

u = 2e−i
pi
3 and u−15 = 1

215
ei

15π
3 = 1

215
eiπ = − 1

215
.

• For which values of n is (
√

3− i)n an imaginary number? And for which values of
n is it a real number?

Solution: Let z =
√

3− i. Then the argument of z is −π
6 . So zn is an imaginary

number if and only if −π
6n = 2kπ ± π

2 for some integer k. This is the case if and
only if n = −12k ± 3 for some integer k, i.e. if n ≡ ±3 mod 12.

• Find a formula for sin(6θ) in terms of cos θ and sin(θ).

Solution: By de Moivre’s formula, (cos θ+ i sin θ)6 = cos(6θ) + i sin(6θ). We will
now give the terms from the left hand side that form its imaginary part (the ones
with the odd exponents) :(

6
1

)
cos θ ∗ (i sin θ)5 +

(
6
3

)
(cos θ)3 ∗ (i sin θ)3 +

(
6
5

)
(cos θ)5 ∗ (i sin θ) =

= i6 cos θ sin5 θ − i20 cos3 θ sin3 θ + i6 cos5 θ sin θ.

• If you consider all the roots of the equation z8 = 1 + i, what shape do they make?
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Solution: They form the corners of a regular octagon which is inscribed in a circle
of radius 16

√
2, and one of the vertices lies on a line through the origin that makes

an angle of π
32 with the positive x-axis.

3. Induction

Typical Problems.

• Use induction to prove result about divisibility: For all integers n ≥ 0, the number
52n − 3n is a multiple of 11.

Solution: We prove this by induction on n.
Induction basis: for n = 0, 52n − 3n = 1− 1 = 0, which is a multiple of 11.
Induction hypothesis: assume that 52n−3n is a multiple of 11, say 52n−3n = 11k.
Induction step: we show now that 52n+2 − 3n+1 is a multiple of 11.

52n+2 − 3n+1 = 52n ∗ 52 − 3n ∗ 3
= 25 ∗ 52n − 3 ∗ 3n

= 22 ∗ 52n + 3 ∗ 52n − 3 ∗ 3n

= 11 ∗ 2 ∗ 52n + 3(52n − 3n)
= 11 ∗ 2 ∗ 52n + 3 ∗ 11k

by the induction hypothesis, and it is clear that this last expression is a multiple of
11.

We conclude that for all integers n ≥ 0, the number 52n − 3n is a multiple of 11.

• Induction can also be very helpful in proving inequalities. For the induction step in
this type of situation, you want to start with the left hand side of the equation and
rewrite it until the left hand side of the induction hypothesis is part of it - then you
can apply the induction hypothesis to get the first inequality; after that you may
need to do a bit of rewriting with the remaining terms to show that they keep you
on the correct side of the inequality. Here are some practice problems:
(1) If n ≥ 3 is an integer, then 5n > 4n + 3n + 2n.

Solution: We prove this by induction on n.
Induction basis: for n = 3, 125 > 64 + 27 + 8 = 99, so this is correct.
Induction hypothesis: assume that 5n > 4n + 3n + 2n.
Induction step: we will now show that 5n+1 > 4n+1 + 3n+1 + 2n+1.

5n+1 = 5 ∗ 5n

> 5(4n + 3n + 2n) (by the induction hypothesis)
= 5 ∗ 4n + 5 ∗ 3n + 5 ∗ 2n

> 4 ∗ 4n + 3 ∗ 3n + 2 ∗ 2n

= 4n+1 + 3n+1 + 2n+1.
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• Use induction to show results about geometric problems, such as the number of
areas formed by n lines in the plane (see the assignment problems). If you want
more practice, here two related problems:
(1) Given n circles in the plane, suppose that you want to colour the finite regions

formed by those circles, in such a way that if two regions share a circle segment
(not just a point), then they have distinct colours. How many colours would
you need? Prove your result.

Solution: You can do this with two colours. We will prove this by induction
on n, the number of circles.
Induction basis: if you have just one circle, you can colour the inside with one
colour and the outside with the other colour, so it is true for n = 1.
Induction hypothesis: Suppose that you can colour the regions formed by n
circles with 2 colours.
Induction step: suppose that you have n+ 1 circles in the plane. First remove
one circle. Now you have n circles left. You can colour the regions formed by
these circles with two colours according to the induction hypothesis. Now add
the last circle back in and swap all the colours of the regions that are inside
the last circle. You may check that this gives again a valid colouring.

4. Infinity

Typical Problems.

• Determine for each of the following sets whether they are finite (give the size),
countable or uncountable (give a proof):
(1) the set of infinite 01-sequences;

Solution: You have shown in yor last assignment that this is uncountable (us-
ing a diagonal argument).

(2) the set of lines through the origin in the plane;

Solution: Mapping a line through the origin to its slope gives a bijective corre-
spondence between this set and the real numbers. The real numbers have been
shown to be uncountable, so this set is also uncountable.

(3) N× Z = {(n, z)|n ∈ N, z ∈ Z};

Solution: This set is countable. It is clear that this set is infinite, so this can
be proved by constructing an injective function f : N× Z→ N. I define f by

f(n, z) =
{

2n3z if z ≥ 0
2n5−z if z < 0

You may check that this function is indeed injective.
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(4) the irrational numbers;

Solution: This set is uncountable. The proof goes by contradiction. Suppose
that this set is countable. The real numbers form the union of this set together
with the rationial numbers. The rational numbers are known to be countable,
so this would make the real numbers countable since the union of two countable
sets is countable. Contradiction, so the set of irrational numbers is uncountable.

(5) the set containing all prime numbers;

Solution: This is an infinite subset of the natural numbers, so it is countable.
(Do you know how to prove that there are infinitely many prime numbers?)

(6) the set of points in the plane with coordinates (n2,m2), where n and m are
integers;

Solution: This set is countable: it is clearly infinite and an injective function f
from this set to the natural numbers can be defined by f((n2,m2)) = 2n

2 ∗3m
2
.

(and in many other ways)

(7) the set of infinite sequences of digits;

Solution: Since this set contains the set of 01-sequences, it is uncountably in-
finite.

(8) the set of finite sequences of digits;

Solution: This set is countable. Think of a way to prove this.

(9) the set of finite sequences of digits of length less than or equal to 10 (if you
find 10 hard, first try 4 or 5).

Solution: This set is finite of size 1010.
.


