7.1(a)

7.1(b)

Solutions to Assignment 4

To find the roots of £2 — 52 + 7 — 3 = 0, we start by using the quadratic
formula and we find z = LV;““. Let z = re'® be one of those roots.
Then 22 = -3+ 4i. | -3+ 4i] = v/9+16 = 5 and the argument of
—3 4 4i is arccos(—3/5). This is not a nice angle, but that is not too
important, we do know its sin, cos, and tan. Lets call ¢ = arccos(—3/5);
then sin(p) = 4/5, cos(¢) = —3/5 and tan(p) = —4/3. 22 = r2e?” so
r? =5 and 20 = arccos(—3/5) = ¢, so 6 = 2¢. So

z = +/5(cos(f) + isin(f))

= ﬁ(cos(%cp) +1 sin(%(p))

\/5(\/1 + CQOS(w) H.\/l — CQOS(w))

= \/g (\/1 + cos(p) 4 i/1 — cos(@))
— \/g (Vl +(=3/5) +iy/1 - (—3/5))
= 2 (Ve + i)

= 142

When we plug that back into our quadratic formula, we get = =
SO

5+ (1+424)
2 )
r=3+i0orz=2—1.

We may check that these answers are correct: for x = 3414, 22 —5x+7—
i=(3+4)2=5(3+i)+7—i=9+6i—1—15—5i+7—i = 0; and for x = 2—1,
2?2 —br+T7—i=(2-i)2?-52—i)+7—i=4—4i—1—-10+5i+7—i=0.
Note that this is really a quadratic equation in 22, so we will first treat it
as such and use the quadratic formula to get solutions for z2.

2 —1xvI-4 ~14+v3i —1, 3

5 5~ 3 Tt

So we need to find x such that

s —1 VB, -1 V3.

e R A S B

We use the methods from before. First find a special root for 22 = _71 + @z
suppose = re?. Then r = 1 and 20 = 2?” So 0 = %” = %. So we get
@ = €5 = cos(n/3) + isin(n/3) = 3 +i¥3. The other root is found by

multiplying by a second root of unity, i.e., -1. So z = :I:(% + z@) Now we
treat 22 = _71 — @z in the same way. If x = re*?, then r = 1 and 20 = —%’r,
$0 0 = —Z. We find that 2 = =5 = 1 — i¥3_ The other root is then z =

3" 2 2
_1,,V3 L1y .y3 1 oy3 1 V3 1,43
2—i-22.Insummary,therootsaure.2—1—12, 3%, 5, —5 s

7.2 We use our algorithm for finding roots to find the roots of

22— 622 +132—12=0.
1



The first step requires to make a substitution to get rid of the quadratic
term. In this case a = —6, so we write y =2+ § =2 —6/3 = — 2, so we
substitute x = y + 2. Then we get

(y+2)%—6(y+2)2+13(y+2) — 12 =0.

Factoring this out using binomial coefficients gives

3 3 3 3
(0>y3+ (1>y2*2+ <2>y*22+ <3>23—6(y2+4y+4)+13y+26—12:O
and this can be rewritten as
P46y + 12y +8—6y° — 24y — 24+ 13y + 14 =0

and that can be rewritten as

v +y—2=0.
The next step of our algorithm is to find complex numbers u and v such
that

—3uv =1 and — (u® +0%) = -2
SO
—3uv =1 and u® + 03 =2
Substituting v = —3% in the second equation gives
1
3_ _
T

Multiplying by 27u? gives
27u® — 14227 =0

So
27u’ + 54u® — 1 =0
This is quadratic in u®. Using the quadratic formula we find that one

solution for u? is
s —5A+ BT F A2 —hA++/3024  —54+12V21 2
“= 54 - 54 - 54 =-lrgval

Now we need to solve for u. Note that u3 is a real number, so we find one
solution for w by simply taking the cube root of this number:

u= ¢/ (—1 - ;@)

The other two solutions can be found by multiplying this solution by third
roots of unity. Then we get

2 0
3 (—1 + 9«21) s

]
I

u

2 an
: (-1 + 9\/21> e
We calculate the corresponding v-values and y-values:

2 1 2 B
u={ (—1 + 9\/21> comes with v = —= (—1 + 9\/21)

1
3

3



8.2

and this gives

With a lot of clever algebra you can show that this gives y = 1, and the
corresponding z-value is then: © = 1+ 2 = 3. (This can also be seen from
the fact that you know that z = 3 must be a solution, and the other two
solutions below are clearly complex numbers that are not real.) The other
solutions are:

1
f 2 e 1 2 s,
uw= ¢ <—1 + 9\/21)6“’3 with v = —3 (—1 + 9\/21> e i

This gives
y = utv

/ 2 2 1 2 T3 o,
= 3(1+9\/21>61%3<1+9\/21) e i

Note that the real part of this is

(o 2va) e - (-1 2va1) e 2 -
(i)

So the real part of the corresponding value for z is f% +2= % You can
now plug in % + bi as a root in the original equation and you find that

Wl

N~ N

b= i%\ﬁ , so we have the following solutions:

3 1 3 1
t=3,x==+-iVT,o==—=iV/T
2 2 2 2
Note that the complex roots are complex conjugates. This is not coinci-
dence! If the coefficients of a polynomial are real, the complex roots always

come in pairs of complex conjugates.

Claim Y r? = tn(n+ 1)(2n + 1) for all positive integers n.

Proof: We prove this by induction on n.

For the base case, let n = 1. Then the left hand side is equal to 1 and
the right hand side is equal to % x1%2x%3 =1, so this is correct.

For the induction hypothesis we assume that Y_; 72 = &n(n+1)(2n+1)

For the induction step we need to prove

n+1 1
> o= s+ 1(n+2)(2n+3)



We do this as follows:

n+1

> -

r=1

n

Z r? 4+ (n+1)2
r=1
6n(n +1)(2n+1)+ (n+1)? (by the induction hypothesis)

S0 D20+ 1)+ 6(n+ 1))

1
6(n +1)(2n? +n + 6n + 6)

1
6(n +1)(2n% + Tn + 6)

é(n +1D(n+2)(2n+3)

as required. The result of our claim now follows by induction.
As a consequence of this result we prove a couple of related results:

12432457+

2n—1

Zr —227“

= é(Zn—l)( (4n—1) Z4r

+(2n —1)2

1
= ;@n-1)@n)(n 1) 427“
1 1
= @10 - 1)~ <(n - D(n)(2n - 1)
_ %(Zn ~Dn2(4n —1) +n - 1)
= é(Zn—l)n(Sn—Z—FN—l)
_ é(2n—1)n(9n—3)
= %(211—1)71(371—1)

= %n(Qn -1)(8n—-1)



n

11423435447+ +n2n-1) = > r@2r-1)

r=1
n

= Z(2r2 —r)

= 2127“2 — er
= 227‘2—%71(71—1—1)

r=1
= 2% én(n—&— D2n+1) - %n(n—kl)
= %n(n +1)2n+1) - %n(n +1)
én(n +1)(2(2n+1) — 3)
_ %n(nqL 1)(dn +2 - 3)

= én(n +1)(4n—-1)

2
3(b) We guess that Ezz(nil)@rl k= (n—1)3 + n3 for all positive integers n.
There are several ways to prove this. One way goes as follows:

n2

>

k=(n—1)2+1

k

n? (n—1)2
_ Z k
k=1
P20 +1) = Sn— (0 —1)” +1)
(' = (n = )" + 0% = (n—1)%)

b
Il

1

(n* = (n=1*)(n* + (n—1)*) + n® — (n —1)*)
==+ n-12+1)

(2n —1)(2n? — 2n 4 2)

N RN RN RN~DN -

(2n —1)(n* —n+1)
n?+n®—3n2+3n—-1
n3 +(n—1)>»



You can also consider this as follows:

n2

Yook = n-1P+1+m-12+2+m-12+3+-(n—1)>+2n -1
k=(n—1)2+1
2n—1
= @-Dn-12+ >k
k=1

2n —1)(n — ) ;(271—1)(211)

(2n —1)(n* —2n+14n)
2n—1)(n? —n+1)
= P4+ (n-1)3

( )

= 2n—-1Dn-1%+02n—-1)n
)
)(



