
Solutions to Assignment 4
7.1(a) To find the roots of x2 − 5x + 7 − i = 0, we start by using the quadratic

formula and we find x = 5±
√
−3+4i
2 . Let z = reiθ be one of those roots.

Then z2 = −3 + 4i. | − 3 + 4i| =
√

9 + 16 = 5 and the argument of
−3 + 4i is arccos(−3/5). This is not a nice angle, but that is not too
important, we do know its sin, cos, and tan. Lets call ϕ = arccos(−3/5);
then sin(ϕ) = 4/5, cos(ϕ) = −3/5 and tan(ϕ) = −4/3. z2 = r2e2θi so
r2 = 5 and 2θ = arccos(−3/5) = ϕ, so θ = 1

2ϕ. So

z =
√

5(cos(θ) + i sin(θ))

=
√

5(cos(
1
2
ϕ) + i sin(

1
2
ϕ))

=
√

5(

√
1 + cos(ϕ)

2
+ i

√
1− cos(ϕ)

2
)

=

√
5
2

(√
1 + cos(ϕ) + i

√
1− cos(ϕ)

)
=

√
5
2

(√
1 + (−3/5) + i

√
1− (−3/5)

)
=

√
5
2

(√
2/5 + i

√
8/5
)

= 1 + 2i.

When we plug that back into our quadratic formula, we get x = 5±(1+2i)
2 ,

so
x = 3 + i or x = 2− i.

We may check that these answers are correct: for x = 3+ i, x2−5x+7−
i = (3+i)2−5(3+i)+7−i = 9+6i−1−15−5i+7−i = 0; and for x = 2−i,
x2− 5x+ 7− i = (2− i)2− 5(2− i) + 7− i = 4− 4i− 1− 10 + 5i+ 7− i = 0.

7.1(b) Note that this is really a quadratic equation in x2, so we will first treat it
as such and use the quadratic formula to get solutions for x2.

x2 =
−1±

√
1− 4

2
=
−1±

√
3i

2
=
−1
2
±
√

3
2
i.

So we need to find x such that

x2 =
−1
2

+
√

3
2
i or x2 =

−1
2
−
√

3
2
i.

We use the methods from before. First find a special root for x2 = −1
2 +

√
3

2 i

suppose x = reiθ. Then r = 1 and 2θ = 2π
3 . So θ = 2π

6 = π
3 . So we get

x = ei
π
3 = cos(π/3) + i sin(π/3) = 1

2 + i
√

3
2 . The other root is found by

multiplying by a second root of unity, i.e., -1. So x = ±( 1
2 + i

√
3

2 ). Now we
treat x2 = −1

2 −
√

3
2 i in the same way. If x = reiθ, then r = 1 and 2θ = − 2π

3 ,
so θ = −π3 . We find that x = e−i

π
3 = 1

2 − i
√

3
2 . The other root is then x =

− 1
2 +i

√
3

2 . In summary, the roots are: 1
2 +i

√
3

2 ,−
1
2−i

√
3

2 ,
1
2−i

√
3

2 ,−
1
2 +i

√
3

2 .
7.2 We use our algorithm for finding roots to find the roots of

x3 − 6x2 + 13x− 12 = 0.
1



2

The first step requires to make a substitution to get rid of the quadratic
term. In this case a = −6, so we write y = x+ a

3 = x− 6/3 = x− 2, so we
substitute x = y + 2. Then we get

(y + 2)3 − 6(y + 2)2 + 13(y + 2)− 12 = 0.

Factoring this out using binomial coefficients gives(
3
0

)
y3 +

(
3
1

)
y2 ∗ 2 +

(
3
2

)
y ∗ 22 +

(
3
3

)
23 − 6(y2 + 4y + 4) + 13y + 26− 12 = 0

and this can be rewritten as

y3 + 6y2 + 12y + 8− 6y2 − 24y − 24 + 13y + 14 = 0

and that can be rewritten as

y3 + y − 2 = 0.

The next step of our algorithm is to find complex numbers u and v such
that

−3uv = 1 and − (u3 + v3) = −2
so

−3uv = 1 and u3 + v3 = 2
Substituting v = − 1

3u in the second equation gives

u3 − 1
27u3

= 2

Multiplying by 27u3 gives

27u6 − 1 + 2 ∗ 27u3 = 0

So
27u6 + 54u3 − 1 = 0

This is quadratic in u3. Using the quadratic formula we find that one
solution for u3 is

u3 =
−54 +

√
542 + 4 ∗ 27
54

=
−54 +

√
3024

54
=
−54 + 12

√
21

54
= −1 +

2
9

√
21

Now we need to solve for u. Note that u3 is a real number, so we find one
solution for u by simply taking the cube root of this number:

u = 3

√(
−1 +

2
9

√
21
)

The other two solutions can be found by multiplying this solution by third
roots of unity. Then we get

u = 3

√(
−1 +

2
9

√
21
)
ei

2π
3

u = 3

√(
−1 +

2
9

√
21
)
ei

4π
3

We calculate the corresponding v-values and y-values:

u = 3

√(
−1 +

2
9

√
21
)

comes with v = −1
3

(
−1 +

2
9

√
21
)− 1

3
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and this gives

y = u+ v = 3

√(
−1 +

2
9

√
21
)
− 1

3

(
−1 +

2
9

√
21
)− 1

3

With a lot of clever algebra you can show that this gives y = 1, and the
corresponding x-value is then: x = 1 + 2 = 3. (This can also be seen from
the fact that you know that x = 3 must be a solution, and the other two
solutions below are clearly complex numbers that are not real.) The other
solutions are:

u = 3

√(
−1 +

2
9

√
21
)
ei

2π
3 with v = −1

3

(
−1 +

2
9

√
21
)− 1

3

e−i
2π
3

This gives

y = u+ v

= 3

√(
−1 +

2
9

√
21
)
ei

2π
3 − 1

3

(
−1 +

2
9

√
21
)− 1

3

e−i
2π
3

Note that the real part of this is

3

√(
−1 +

2
9

√
21
)

cos(
2π
3

)− 1
3

(
−1 +

2
9

√
21
)− 1

3

cos(−2π
3

) =

= −1
2

(
3

√(
−1 +

2
9

√
21
)
− 1

3

(
−1 +

2
9

√
21
)− 1

3
)

= −1
2

So the real part of the corresponding value for x is − 1
2 + 2 = 3

2 . You can
now plug in 3

2 + bi as a root in the original equation and you find that
b = ± 1

2

√
7, so we have the following solutions:

x = 3, x =
3
2

+
1
2
i
√

7, x =
3
2
− 1

2
i
√

7

Note that the complex roots are complex conjugates. This is not coinci-
dence! If the coefficients of a polynomial are real, the complex roots always
come in pairs of complex conjugates.

8.2 Claim
∑n
r=1 r

2 = 1
6n(n+ 1)(2n+ 1) for all positive integers n.

Proof: We prove this by induction on n.
For the base case, let n = 1. Then the left hand side is equal to 1 and

the right hand side is equal to 1
6 ∗ 1 ∗ 2 ∗ 3 = 1, so this is correct.

For the induction hypothesis we assume that
∑n
r=1 r

2 = 1
6n(n+1)(2n+1)

For the induction step we need to prove

n+1∑
r=1

r2 =
1
6

(n+ 1)(n+ 2)(2n+ 3)
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We do this as follows:

n+1∑
r=1

r2 =
n∑
r=1

r2 + (n+ 1)2

=
1
6
n(n+ 1)(2n+ 1) + (n+ 1)2 (by the induction hypothesis)

=
1
6

(n+ 1)(n(2n+ 1) + 6(n+ 1))

=
1
6

(n+ 1)(2n2 + n+ 6n+ 6)

=
1
6

(n+ 1)(2n2 + 7n+ 6)

=
1
6

(n+ 1)(n+ 2)(2n+ 3)

as required. The result of our claim now follows by induction.
As a consequence of this result we prove a couple of related results:

12 + 32 + 52 + · · ·+ (2n− 1)2 =
2n−1∑
r=1

r2 −
n−1∑
r=1

(2r)2

=
1
6

(2n− 1)(2n)(4n− 1)−
n−1∑
r=1

4r2

=
1
6

(2n− 1)(2n)(4n− 1)− 4
n−1∑
r=1

r2

=
1
6

(2n− 1)(2n)(4n− 1)− 1
6

(n− 1)(n)(2n− 1)

=
1
6

(2n− 1)n(2(4n− 1) + n− 1)

=
1
6

(2n− 1)n(8n− 2 + n− 1)

=
1
6

(2n− 1)n(9n− 3)

=
3
6

(2n− 1)n(3n− 1)

=
1
2
n(2n− 1)(3n− 1)
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1 · 1 + 2 · 3 + 3 · 5 + 4 · 7 + · · ·+ n(2n− 1) =
n∑
r=1

r(2r − 1)

=
n∑
r=1

(2r2 − r)

=
n∑
r=1

2r2 −
n∑
r=1

r

= 2
n∑
r=1

r2 − 1
2
n(n+ 1)

= 2 ∗ 1
6
n(n+ 1)(2n+ 1)− 1

2
n(n+ 1)

=
2
6
n(n+ 1)(2n+ 1)− 3

6
n(n+ 1)

=
1
6
n(n+ 1)(2(2n+ 1)− 3)

=
1
6
n(n+ 1)(4n+ 2− 3)

=
1
6
n(n+ 1)(4n− 1)

3(b) We guess that
∑n2

k=(n−1)2+1 k = (n− 1)3 + n3 for all positive integers n.
There are several ways to prove this. One way goes as follows:

n2∑
k=(n−1)2+1

k =
n2∑
k=1

−
(n−1)2∑
k=1

k

=
1
2
n2(n2 + 1)− 1

2
(n− 1)2((n− 1)2 + 1)

=
1
2

(n4 − (n− 1)4 + n2 − (n− 1)2)

=
1
2

((n2 − (n− 1)2)(n2 + (n− 1)2) + n2 − (n− 1)2)

=
1
2

(n2 − (n− 1)2)(n2 + (n− 1)2 + 1)

=
1
2

(2n− 1)(2n2 − 2n+ 2)

= (2n− 1)(n2 − n+ 1)
= n3 + n3 − 3n2 + 3n− 1
= n3 + (n− 1)3
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You can also consider this as follows:
n2∑

k=(n−1)2+1

k = (n− 1)2 + 1 + (n− 1)2 + 2 + (n− 1)2 + 3 + · · · (n− 1)2 + 2n− 1

= (2n− 1)(n− 1)2 +
2n−1∑
k=1

k

= (2n− 1)(n− 1)2 +
1
2

(2n− 1)(2n)

= (2n− 1)(n− 1)2 + (2n− 1)n
= (2n− 1)(n2 − 2n+ 1 + n)
= (2n− 1)(n2 − n+ 1)
= n3 + (n− 1)3


