
Solutions to Assignment 6

9.1 (a) Since each vertex lies on 3 edges, the number of edge-vertex pairs is
equal to 2E and to 3V , so

2E = 3V.

The number of face-edge pairs is equal to 4m+5n since there are m squares
and n pentagons, but it can also be counted by the edges: every edge lies
in two faces, so it is equal to 2E. We conclude that

4m + 5n = 2E.

Finally since all faces are either squares or pentagons and there are m
squares and n pentagons, we get that m + n = F .

(b) From Euler’s formula we know that V − E + F = 2. With the first
equation from the previous part we can transform this to 2

3E−E + F = 2,
so − 1

3E + F = 2. Substituting the results form the other two equations
above gives that − 1

3
1
2 (4m + 5n) + m + n = 2. Multiplying both sides by 6

gives −(4m + 5n) + 6m + 6n = 12. So 2m + n = 12, as required.
(c) There are the cube (for m = 6 and n = 0), the pentagonal prism (for

n = 2 and m = 5), and the dodecahedron (for m = 0 and n = 12).
If you are wondering whether there are any other ones, you may check the

list of Archimedean and Johnson polyhedra (you can find it on Wikipedia
or on my office door). A more direct proof requires 3-dimensional trigonom-
etry.

9.2 Consider a convex polyhedron with V vertices, E edges, and F faces. First
count the number of edge-face pairs (e, f) where e is an edge that lies on
the face f . Since every edge lies in exactly two faces, there are 2E such
pairs. One the other hand, every face contains at least three edges, so the
number of these pairs is greater than or equal to 3F . We conclude that

2E ≥ 3F.

Then count the number of vertex-edge pairs (v, e) where the vertex v
lies on the edge e. Since each edge has precisely two vertices, there are 2E
such pairs. However, for a convex polyhedron, each vertex lies on at least
3 edges, so the number such pairs is greater than or equal to 3V , so

2E ≥ 3V.

Euler’s formula gives us that V − E + F = 2, hence

(1) E = V + F − 2

(1) together with 2E ≥ 3F gives us that 2(V +F−2) ≥ 3F , so 2V +2F−4 ≥
3F , so 2V ≥ F + 4 as required. (1) together with 2E ≥ 3V , this gives us
that 2(V + F − 2) ≥ 3V , so 2V + 2F − 4 ≥ 3V , so 2F ≥ V + 4 as required.

We can also rewrite Euler’s formula as

(2) F = E − V + 2

Combining (2) with 3F ≤ 2E gives 3(E−V +2) ≤ 2E. So 3E−3V +6 ≤ 2E,
so −3V ≤ −E − 6, so 3V ≥ E + 6 as required.
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Finally, we can rewrite Euler’s formula as

(3) V = E − F + 2

Combining (3) with 3V ≤ 2E gives 3(E−F +2) ≤ 2E, so 3E−3F +6 ≤ 2E,
so −3F ≤ −E − 6, so3F ≥ E + 6, as required.

A polyhedron for which all these inequalities become equalities is the
tetrahderon with V = 4, E = 6 and F = 4.

9.4 Since at least three edges meet at a vertex the number of vertex-edge pairs
is greater than or equal to 3V ; it is also equal to 2E, so 2E ≥ 3V , i.e.,
2
3E ≥ V . By counting face-edge pairs, we find that 4 ∗ 9 + 8m = 2E, i.e.,
36 + 8m = 2E, so 18 + 4m = E. Combined with the inequality from the
previous sentence this gives us that

(4) V ≤ 2
3

(18 + 4m).

Also, F = 9 + m. Euler’s formula gives us that V − E + F = 2, so
V − (18 + 4m) + (9 + m) = 2, so V − 9 − 3m = 2, so V = 11 + 3m.
Substituting this in (4) gives 11 + 3m ≤ 2

3 (18 + 4m). Rewriting gives
33 + 9m ≤ 36 + 8m, so m ≤ 3. This contradicts the specification that
m ≥ 4. So this is not possible.

9.7 Claim: every connected planar graph has a vertex that is joined to at most
five other vertices.

Proof: Towards a contradiction, assume that there is a (nonempty) plane
graph where every vertex is joined to at least six other vertices. Count the
vertex-edge pairs: since every vertex lies on at least 6 edges, there are at
least 6v of them, so we have that 2e ≥ 6v, so e ≥ 3v. Note that this
graph has at least seven vertices and six edges, so we can apply the for-
mula from Problem 3 of this chapter: e ≤ 3v − 6, so we can conclude that
3v ≤ e ≤ 3v − 6. This is a contradiction, so such a plane graph does not
exist. Conclusion: every connected plane graph has a vertex that is joined
to at most five other vertices.


