
Solutions to Assignment 7

22.3 Let S be the set of all infinite sequences of 0s and 1s. Show that S is
uncountable.

Proof: We use Cantor’s diagonal argument. So we assume (toward
a contradiction) that we have an enumeration of the elements of S, say
as S = {s1, s2, s3, . . .} where each sn is an infinite sequence of 0s and
1s. We will write s1 = s1,1s1,2s1,3 · · · , s2 = s2,1s2,2s2,3 · · · , and so on; so
sn = sn,1sn,2sn,3 · · · . So we denote the mth element of sn by sn,m. Now we
create a new sequence t = t1t2t3t4 · · · of 0s and 1s as follows: tn = sn,n− 1
(so tn = 1 if sn,n = 0 and tn = 0 if the sn,n is 1). It is clear that t is an
element of S - it is an infinite sequence of 0s and 1s. However, we will now
see that t is not in the list above. Suppose that t = sk for some value of k.
Then tk = sk,k, but by construction, tk 6= sk,k, so this is not possible. We
conclude that S is not countable.

22.4(a) Let S be the set of all finite subsets of N. Claim: S is countable.

Proof: We will prove this using the result from Proposition 22.4. So we
will need to construct a 1-1 function f from S to N. To do this, we first
write p1, p2, p3, · · · for the primes in ascending order. Now, for any finite
subset T ⊆ N, start by ordering the elements of T in ascending order, T =
{t1, t2, . . . , tn}, with t1 < t2 < · · · < tn. Then define f(T ) = pt1
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To check that f is 1-1, suppose that f(T ) = f(T ′). Then pt1
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n′ . By the fundamental theorem of arithmetic these two prod-
ucts can only be equal if n = n′ (so T and T ′ have the same number
of elements) and each of the corresponding powers is equal, i.e., t1 = t′1,
t2 = t′2, · · · , tn = t′n; so, T = T ′.

22.4(b) Let T be the set of all infinite subsets of N. Show that T is uncountable.

Proof: By Proposition 22.5 the set of all subsets of N is uncountable
(if it were countable, it would have the same cardinality as N). Suppose
now that the set T of all infinite subsets of N were countable. In Part (a)
we have shown that the set S of all finite subsets of N is countable. So by
Problem 1(b) we could derive that S ∪ T is countable. But S ∪ T is the set
of all subsets of N, so this leads to a contradiction. We conclude that T is
uncountable.

14.1(b) We need to find 0 ≤ r ≤ 645 such that 281 ≡ r mod 645. Since 645 =
3∗5∗43, so an extension of Fermatt’s little theorem gives us that 22∗4∗42 ≡ 1
mod 645, so 2336 ≡ 1 mod 645, but unfortunately that exponent is too
large, so we need to use successive squares or other tricks. (The exten-
sion of Fermatt’s little theorem can be used any time when the power
is a product of distinct squares.) So, here is a solution, using squares
and some powers of 3: 22 ≡ 4 mod 645, 23 ≡ 8 mod 645, 29 ≡ 23 ∗
23 ∗ 23 mod 645 ≡ 512 mod 645 ≡ −133 mod 645, and 218 ≡ 1332

mod 645 ≡ 17, 689 mod 645 ≡ 274 mod 645, so 236 ≡ 2742 mod 645 ≡
1
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75076 mod 645 ≡ 256 mod 645, 272 ≡ 2562 mod 645 ≡ 65, 536 mod 645 ≡
391 mod 645 ≡ −254 mod 645, and finally, 281 = 272 ∗ 29 ≡ (−254) ∗
(−133) mod 645 ≡ 33, 782 mod 645 ≡ 242 mod 645.

14.1(c) To find the last two digits, we need to calculate 3124 mod 100. (Since
100 = 22 ∗ 52, the extensions of Fermatt’s Little Theorem don’t apply.)

However, a quick method goes as follows: 35 = 243 ≡ 43 mod 100,
and 310 ≡ 432 mod 100 ≡ 1849 mod 100 ≡ 49 mod 100, and 320 ≡ 492

mod 100 ≡ 2401 mod 100 ≡ 1 mod 100; so 3124 = 3120 ∗ 34 ≡ 1 ∗ 81
mod 100 ≡ 81 mod 100.

14.3 (a) 99x ≡ 9x mod 30, so we need to solve 9x ≡ 18 mod 30 and it is clear
that x ≡ 9 mod 30 is a solution.

(b) We first find the highest common factor of 91 and 143 by the Eu-
clidean algorithm:

143 = 91 + 52
91 = 52 + 39
52 = 39 + 13
39 = 3 ∗ 13

So (143, 91) = 13. However, 84 is not an integer multiple of 13, so 91x ≡ 84
mod 143 does not have a solution according to Proposition 14.6.

(c) We list the squares mod 5: 02 ≡ 0 mod 5, 12 ≡ 1 mod 5, 22 ≡ 4
mod 5, 32 ≡ 4 mod 5, 42 ≡ 1 mod 5. We conclude that there are no so-
lutions for x2 ≡ 2 mod 5.

(d) Putting 0, 1, 2, 3, 4 into the equation x2 + x + 1 mod 5 gives us
1, 3, 2, 3, 1 respectively. We see that x2 + x + 1 ≡ 0 mod 5 has no so-
lutions.

(e) You may check that x ≡ 2 mod 7 and x ≡ 4 mod 7 are solutions.

15.1 (a) Since 11 is prime and does not divide 3, we can apply Fermatt’s little
theorem, and we get that 310 ≡ 1 mod 11. So 3301 = (310)30 ∗ 3 ≡ 1 ∗ 3
mod 11 ≡ 3 mod 11.

13 is also prime and does not divide 5, so by Fermatt’s little theorem,
512 ≡ 1 mod 13. We calculate that 5110 = (512)952 ≡ 1 ∗ 25 mod 13 ≡ 12
mod 13.

(b) Note that 42 = 7 ∗ 3 ∗ 2, a product of distinct squares. By Fermatt’s
little theorem, np ≡ n mod p for any prime p. So n7 ≡ n mod 7; also,
n3 ≡ n mod 3, and therefore n7 = n3 ∗ n3 ∗ n ≡ n ∗ n ∗ n mod 3 ≡ n
mod 3; finally, n7 is even if and only if n is even, so n7 ≡ n mod 2. We
conclude then that n7−n is a multiple of 7, a multiple of 3, and a multiple
of 2. Since 7, 3, and 2 are distinct prime numbers, this implies that n7 − n
is a multiple of 42.
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15.7 (a) Solve x3 ≡ 2 mod 29. Use the Euclidean algorithm for 28 and 3:

28 = 9 ∗ 3 + 1

So 1 = 28 − 9 ∗ 3 = 28 − 3 ∗ 28 + 28 ∗ 3 − 9 ∗ 3 = −2 ∗ 28 + 19 ∗ 3. So
by the recipe from Proposition 15.2, the solution is x ≡ 219 mod 29 ≡ 26
mod 29. (x ≡ x ∗ (x28)2 mod 29 ≡ (x3)19 mod 29 ≡ 219 mod 29)

(c) Solve x11 ≡ 2 mod 143. Note that 143 = 11 ∗ 13, so we want to ap-
ply the recipe from Proposition 15.3/. We start by applying the Euclidean
algorithm to 11 and 10 ∗ 12 = 120: 120 = 10 ∗ 11 + 10, and 11 = 10 + 1,
so 1 = 11 − 10 = 11 − (120 − 10 ∗ 11) = 11 ∗ 11 − 120. So the solution is
x ≡ 211 mod 143 ≡ 46 mod 143.

16.2 (a) WHEREAREYOU is first translated into numbers as

2308051805011805251521,

by using A = 01, B = 02 and so on up to Z = 26.
Since N = 143, we divide 2308051805011805251521 into 11 two digit

numbers: 23, 08, 05, 18, 05, 01, 18, 05, 25, 15, 21.
Since e = 11 and N = 143, each number is encoded by raising it to the

eleventh power, mod 143. We do this as follows:

n n mod 143 n2 mod 143 n4 mod 143 n8 mod 143 ne mod 143
23 23 100 133 100 56
08 8 64 92 27 96
05 5 25 53 92 60
18 18 38 14 53 73
05 5 25 53 92 60
01 1 1 1 1 1
18 18 38 14 53 73
05 5 25 53 92 60
25 25 53 92 27 25
15 15 82 3 9 59
21 21 12 1 1 109

So, 23, 08, 05, 18, 05, 01, 18, 05, 25, 15, 21 encodes to 56, 96, 60, 73, 60,
01, 73, 60, 25, 59, 109

(b)
We need to find prime numbers p and q such that p ∗ q = 143. The

number 143 factors into 11 ∗ 13, so we take p = 11 and q = 13. Then
(p− 1)(q − 1) = 10 ∗ 12 = 120.

Using the expanded Euclidean algorithm, we solve 1 = 11∗d−(p−1)(q−
1)c and get d = 11 (since 11 ∗ 11− 120 = 121− 120 = 1).
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To decode the string 12, 59, 14, 114, 59, 14 we need to solve each number
raised to the power of d = 11, mod 143.

n n mod 143 n2 mod 143 n4 mod 143 n8 mod 143 nd mod 143
12 12 1 1 1 12
59 59 49 113 42 15
14 14 53 92 27 14
114 114 126 3 9 4
59 59 49 113 42 15
14 14 53 92 27 14

So 12, 59, 14, 114, 59, 14 decodes into 12, 15, 14, 04, 15, 14, which when
we use our initial tranlation of 1 = A, 2 = B and so on, gives us LONDON.


