Saturday, December 3, 2005

Examination A

Problem A1

Show that every positive integer is a sum of one or more numbers of the form 2^r3^s , where r and s are nonnegative integers and no summand divides another. (For example, 23 = 9 + 8 + 6.)

Problem A2

Let $S = \{(a,b) \mid a=1,2,...,n,\ b=1,2,3\}$. A rook tour of S is a polygonal path made up of line segments connecting points $p_1,p_2,...,p_{3n}$ in sequence such that $(i)\ p_i \in S$, $(ii)\ p_i$ and p_{i+1} are a unit distance apart, for $1 \le i < 3n$, (iii) for each $p \in S$ there is a unique i such that $p_i = p$. How many rook tours are there that begin at (1,1) and end at (n,1)?

(An example of such a rook tour for n = 5 is depicted below.)

Problem A3

Let p(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z) = p(z)/z^{n/2}$. Show that all zeros of g'(z) = 0 have absolute value 1.

Saturday, December 3, 2005

Problem A4

Let H be an $n \times n$ matrix all of whose entries are ± 1 and whose rows are mutually orthogonal. Suppose H has an $a \times b$ submatrix whose entries are all 1. Show that $ab \le n$.

Problem A5

Evaluate
$$\int_0^1 \frac{\ln(x+1)}{x^2+1} dx.$$

Problem A6

Let n be given, $n \ge 4$, and suppose that P_1, P_2, \dots, P_n are n randomly, independently and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are the P_i . What is the probability that at least one of the vertex angles of this polygon is acute?

Saturday, December 3, 2005

Examination B

Problem B1

Find a nonzero polynomial P(x, y) such that $P(\lfloor a \rfloor, \lfloor 2a \rfloor) = 0$ for all real numbers a. (Note: $\lfloor v \rfloor$ is the greatest integer less than or equal to v.)

Problem B2

Find all positive integers n, k_1, \dots, k_n such that $k_1 + \dots + k_n = 5n - 4$ and

$$\frac{1}{k_1} + \dots + \frac{1}{k_n} = 1.$$

Problem B3

Find all differentiable functions $f:(0,\infty)\to(0,\infty)$ for which there is a positive real number a such that

$$f'\left(\frac{a}{x}\right) = \frac{x}{f(x)}$$

for all x > 0.

Problem B4

For positive integers m and n, let f(m,n) denote the number of n-tuples $(x_1, x_2, ..., x_n)$ of integers such that $|x_1| + |x_2| + \cdots + |x_n| \le m$. Show that f(m,n) = f(n,m).

Saturday, December 3, 2005

Examination B

Problem B5

Let $P(x_1,...,x_n)$ denote a polynomial with real coefficients in the variables $x_1,...,x_n$, and suppose that

(a)
$$\left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right) P(x_1, \dots, x_n) = 0 \quad \text{(identically)}$$

and that

(b)
$$x_1^2 + \dots + x_n^2 \text{ divides } P(x_1, \dots, x_n).$$

Show that P = 0 identically.

Problem B6

Let S_n denote the set of all permutations of the numbers 1, 2, ..., n. For $\pi \in S_n$, let $\sigma(\pi) = 1$ if π is an even permutation and $\sigma(\pi) = -1$ if π is an odd permutation. Also, let $\nu(\pi)$ denote the number of fixed points of π . Show that

$$\sum_{\pi \in S_n} \frac{\sigma(\pi)}{\nu(\pi) + 1} = (-1)^{n+1} \frac{n}{n+1}.$$