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1. Introduction

It is unusual for an irreducible polynomial to have a root with rational

real part or with rational imaginary part. Of course, such polynomials exist:

one can simply take the minimal polynomial of, say, 1+ i
√

2 or
√

2+ i. The

same applies to polynomials having a root of rational modulus. But it turns

out to be of interest to characterize these three kinds of polynomials. We

therefore define our first family of polynomials, C1, to consist of the minimal

polynomials of some algebraic number having rational real part. Our second

family, C2, consists of the minimal polynomials of some algebraic number

having rational imaginary part, while our third family, C3, consists of the

minimal polynomials of some algebraic number having rational modulus .

We describe the polynomials of each family in Sections 3, 4 and 5. Then in

Sections 6, 7 and 8 we classify the polynomials belonging to two of the three

families, while in Section 9 we do the same for the polynomials belonging

to all three families. Section 2 contains preliminary results needed for the

proofs.

For a rational linear polynomial, its root has rational real part, imaginary

part and modulus. An irreducible quadratic polynomial z
2 + pz + q with

rational coefficients and with discriminant ∆ = p
2− 4q belongs to C1 if and

only if ∆ < 0, to C2 if and only if −∆ is a square (in which case it belongs

to C1 ∩ C2) or ∆ > 0, and to C3 if and only if ∆ < 0 and q is a square (in

which case it belongs to C1 ∩ C3). Hence it belongs to C2 ∩ C3 if and only

if −∆ and q are both squares (in which case it belongs to C1 ∩ C2 ∩ C3).

For −∆ = a
2 and q = b

2 this latter condition is 4b2 − a
2 = p

2. This is

essentially the Pythagoras equation, with solution p = u
2−v

2, a = 2uv and

2b = u
2 +v

2 for some rationals u and v. For the rest of the paper, therefore,

we can restrict our attention to polynomials of degree at least 3.
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2. Preliminaries

There are two different techniques for studying minimal polynomials,

depending on whether one works with the polynomials themselves, or with

their roots, which are algebraic numbers. Recall that for any such root, the

monic irreducible polynomial it satisfies is its minimal polynomial, and, for

a given root of such a polynomial, the collection of all roots constitutes

its set of conjugates. In this paper, we employ both approaches. For the

second, the following lemma and corollary are needed. They contain the

main application of Galois Theory required for our proofs.

Lemma 1. Let H(z1, . . . , zk) ∈ Q[z1, . . . , zk] be such that H(α1, α2, . . . , αk)

= 0 for certain algebraic numbers α1, α2, . . . , αk. Then for each conjugate

α
�
1 of α1 there are conjugates α

�
2, . . . , α

�
k

of α2, . . . , αk, respectively, such that

H(α�
1, α

�
2, . . . , α

�
k
) = 0.

Proof. Take F to be a Galois extension of Q containing α1, α2, . . . , αk. Then

we know from Galois Theory that for any α ∈ F the set Sα of its conju-

gates is stable under the action of the Galois group G = Gal(F/Q), and

that, furthermore, this action is transitive on Sα. Thus we can apply to

H(α1, α2, . . . , αk) = 0 an automorphism σ ∈ G with σ(α1) = α
�
1 to get

0 = σH(α1, α2, . . . , αk) = H(σ(α1), σ(α2), . . . , σ(αk)). Then, for j ≥ 2 put

α
�
j
= σ(αj), a conjugate of αj. �

Corollary 1. Let H(z1, z2, z3) ∈ Q[z1, z2, z3] be such that H(α1, α2,±i) = 0

for some choice of sign ± and algebraic numbers α1, α2, where α1 has a real

conjugate. Then, for each conjugate α
�
1 of α1, there exist conjugates α

�
2 and

α
��
2 of α2 such that H(α�

1, α
�
2, i) = H(α�

1, α
��
2,−i) = 0.

Proof. Assume the hypotheses, and let α
∗
1 be a real conjugate of α1. By

Lemma 1, there exists a conjugate α
∗
2 of α2 such that, for some choice of

ε = ±1, we have

(1) H(α∗
1, α

∗
2, εi) = 0.

We then also have

(2) H(α∗
1, α

∗
2,−εi) = 0.

Now let α
�
1 be a conjugate of α1. Then α

�
1 is also a conjugate of α

∗
1 so that,

for some Q-embedding σ, we have σ(α∗
1) = α

�
1. Applying σ to (1) and (2)

yields

H(α�
1, σ(α∗

2), εσ(i)) = H(α�
1, σ(α∗

2),−εσ(i)) = 0.
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Since one of εσ(i),−εσ(i) is equal to i while the other is equal to −i, the

result follows by defining α
�
2 and α

��
2 appropriately such that {α�

2, α
��
2} =

{σ(α∗
2), σ(α∗

2)}. �

The following simple well-known lemma is basic to our analysis of the

minimal polynomials of algebraic numbers with rational real part.

Lemma 2. If the minimal polynomial P (z) ∈ Q[z] of an irrational alge-

braic number α also has −α as a root, then P (z) = Q(z2) for some monic

irreducible polynomial Q(z) ∈ Q[z].

Proof. We know that P (z) is monic, irreducible and of degree at least two.

Suppose that α ∈ C is such that P (α) = P (−α) = 0. Then P (z) and P (−z)

share the root α. Since P is the minimal polynomial of α, we must have

P (−z) = ±P (z) so that P is either odd or even. Now, P cannot be odd

since it is not divisible by z. We conclude that P is even and consequently

a polynomial in z
2. Finally, if P (z) = Q(z2), then the fact that P is monic

and irreducible forces Q to be monic and irreducible as well. �

Thus the lemma says that an irreducible polynomial of degree at least

two with rational coefficients, having two roots summing to 0, must be a

polynomial in z
2. However, we mention in passing that it is not the case

that an irreducible polynomial with rational coefficients having three roots

summing to 0 must be a polynomial in z
3. (In fact, its degree need not even

be divisible by 3.) See [2], where the counterexample P (z) = z
20 +4 ·59

z
10 +

16 · 515 is shown to have three roots that sum to 0.

The following lemma is needed in Section 6.

Lemma 3. Let Q(z) ∈ Q[z] be an irreducible polynomial having both a

positive real root and a negative real root. Then Q(z2) is irreducible and, for

every nonzero r ∈ Q, the polynomial Q((z + ir)2)Q((z− ir)2) ∈ Q[z] is also

irreducible.

Proof. Let β > 0 and β
�
< 0 be roots of Q. Then, as

√
β� is imaginary, it

does not belong to Q(β�), so

[Q(
�

β�) : Q] = 2[Q(β�) : Q] = deg Q(z2).

Hence Q(z2) is irreducible.

Now put Q2(z) = Q(z2), so that Q2 is irreducible. Then Q((z+ir)2)Q((z

− ir)2) = Q2(z + ir)Q2(z − ir) has a root, α say, with α + ir =
√

β. Since

Q(
√

β) is a real field, it cannot contain α, and hence

[Q(α) : Q] = 2[Q(
�

β) : Q] = 2 deg Q2 = deg
�
Q((z + ir)2)Q((z − ir)2)

�
.
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Hence Q((z + ir)2)Q((z − ir)2) is irreducible. �

The following result is needed for the proofs of Theorems 6 and 7. It is,

in principle, well-known (see, e.g., [8, p. 179]), but it is convenient for us to

state and prove the precise special case we require.

Denote by G the group of Möbius transformations az+b

cz+d
with a, b, c, d ∈ Q,

ad− bc = ±1, under functional composition. Furthermore, for nonnegative

rational numbers t, let Ht denote the subgroup of G generated by gt = t− z

and g∗ = 1/z.

Lemma 4. The subgroup Ht of G is infinite in all cases except

H0 =

�
z,

1

z
,−z,−1

z

�
, H1 =

�
z,

1

z
, 1− z,

1

1− z
,

z

z − 1
,
z − 1

z

�
.

Furthermore

1

2

�

h∈H0

h
2 = z

2 +
1

z2
and

1

2

�

h∈H1

h
2 = �(z)2 +

21

4
,

where

(3) �(z) =
(z − 2)(z − 1

2)(z + 1)

z(z − 1)
.

This latter sum is related to the classical j-invariant j(λ) of the general

elliptic curve in Legendre form Y
2 = X(X − 1)(X − λ). Indeed,

j(λ) = 28 (λ2 − λ + 1)3

λ2(λ− 1)2
= 256�(λ)2 + 1728;

see, for instance, [12, p. 68]. We need to work with the sums
�

h
2 that

appear in the lemma because
�

h∈H0
h = 0 and

�
h∈H1

h = 3 are of no use

to us, being independent of z.

Proof of Lemma 4. The group G is well-known to be isomorphic, via az+b

cz+d
�→

( a b

c d
), to the group of rational matrices ( a b

c d
) of determinant ±1, factored by

the subgroup ±I, where I is the 2× 2 identity matrix. Under this isomor-

phism, g
� = g∗ ◦ gt = 1/(t− z) corresponds to the matrix A

� = ( 0 1
−1 t ). If Ht

is finite, then g
� must have finite order, and so the eigenvalues of A

� must be

roots of unity. Now the characteristic equation of A
� is λ

2− tλ+1 = 0, and,

for its roots to be roots of unity, the sum of its roots, namely t, must be

an algebraic integer between −2 and 2. But t is nonnegative and rational,

so t ∈ {0, 1, 2}. However, for t = 2 we have A
�n =

�
1−n n

−n 1+n

�
, so that A

� is

of infinite order. So for Ht finite, t can only be 0 or 1. For these two cases

we use gt and g∗ to generate Ht as claimed, and to check that these sets

are stable under the action of gt and g∗. Finally, the values of the sums of

squares can be verified by direct computation. �



ALGEBRAIC NUMBERS WITH RATIONAL PARAMETERS 5

The next result is needed for the proof of Theorem 14. Define the Möbius

transformation F by

(4) F (z) =
i

2z + 3
4

z + i

2

.

Lemma 5. The group H of Möbius transformations generated by g1 = 1−z

and F , defined by (4), is given by

H =

�
z,

2iz − 3

−4z + 2i
,
(−4 + 2i)z + 1

−4z + 4 + 2i
,
(−2 + 4i)z − i

4iz − 2− 4i
,
−2z + 3i

4iz − 2
,

−2iz − 3 + 2i

4z − 4 + 2i
,
(4− 2i)z − 3 + 2i

4z + 2i
,
(−2 + 2i)z − 1− 3i

(−4 + 4i)z + 2− 2i
,

(2 + 2i)z + 1− 3i

(4 + 4i)z − 2− 2i
,
−2iz + 3 + 2i

−4z + 4 + 2i
,
(−4− 2i)z + 3 + 2i

−4z + 2i
, 1− z

�
.

Also,

(5)
1

2

�

h∈H

h
2 =

v
3 + 3v2 + 36v + 12

2v2 + 8
,

where v = w − 1/w with w = 1
2(2z − 1)2

.

As in the previous lemma,
�

h∈H
h = 6, independent of z.

Proof. The result can be verified, e.g., using the computer algebra system

Maple [6], by showing that repeated applications of z �→ 1 − z and F to z

give H, which is then stable under both maps. Maple can also be used to

verify the value of the sum in (5). �

As we shall see, for an irreducible polynomial P of degree at least 3

having a root with rational real part r, all roots of P having rational real

part have the same real part r, denoted by c1(P ). Similarly, for an irreducible

polynomial P of degree at least 3 having a root with nonnegative rational

imaginary part r
�, all roots of P having nonnegative rational imaginary part

have the same imaginary part r
�, denoted by c2(P ). Again, for an irreducible

polynomial P of degree at least 3 having a root with rational modulus R, all

roots of P having rational modulus have the same modulus R, denoted by

c3(P ). Thus, before stating the first of our 14 theorems, and corresponding

examples, covering the different cases discussed in Section 1, we introduce

a system of labelling for these theorems and examples, where appropriate:

the label [r, r�, R] (= [c1(P ), c2(P ), c3(P )]) indicates that the theorem in

question deals with polynomials that have roots with rational real part r,

roots with nonnegative rational imaginary part r
�, and roots with rational

modulus R. A dash “−” indicates that one or two of the categories are

irrelevant.
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3. Polynomials in C1

In this section we study the family C1 of minimal polynomials of algebraic

numbers with rational real part. Our first example is the minimal polynomial

of four different algebraic numbers, all with rational real part.

Example 1 ([1,−,−]). Let P (z) = z
4− 4z3 +9z2− 10z +5. Consideration

of possible factors shows that this polynomial is irreducible, and its roots are

1 ± 1
2(1−

√
5)i, 1 ± 1

2(1 +
√

5)i, all four roots having rational real part. So

P ∈ C1.

More generally, if r is rational and w is a totally real algebraic number

then the minimal polynomial of r + iw has all roots r ± iw
�, for conjugates

w
� of w, with rational real part. We notice that all these rational real parts

are the same. Corollary 2 below shows that this is typical.

However, our next example shows that not all the roots of a polynomial

in C1 need have rational real part.

Example 2 ([0,−,−]). Consider P (z) = z
4 − 2; it is irreducible over Q,

and among its roots ± 4
√

2, ±i
4
√

2, two have real part 0. So P ∈ C1.

Theorem 1 ([r,−,−]). Let P be a polynomial of degree at least 3. Then

P ∈ C1 if and only if P (z) = Q((z − r)2) for some r ∈ Q and monic

irreducible polynomial Q(z) ∈ Q[z] having a negative real root. In this case,

P has a root with rational real part r.

Proof. Suppose first that P (z) = Q((z − r)2) for some r ∈ Q and monic

irreducible polynomial Q(z) ∈ Q[z] that has a negative real root t. Write

t = −s
2 where s ∈ R is nonzero. Then, with α = r + is, we have

P (α) = Q((is)2) = Q(−s
2) = Q(t) = 0

so that α is a root of P with rational real part r. Since P is monic, in order

to show that P ∈ C1, we are reduced to proving that P is irreducible over

Q. To accomplish this, we show that degQ(α) = deg P . Since α = r +
√

t,

and
√

t �∈ Q(t) (because Q(t) is a real field, while
√

t is purely imaginary),

we conclude that [Q(α) : Q(t)] = 2. It follows from the multiplicativity of

degrees in field extensions that [Q(α) : Q] = [Q(α) : Q(t)][Q(t) : Q] =

2[Q(t) : Q] = 2 deg Q = deg P as required.

For the other direction, suppose that P ∈ C1 has degree at least 3. Then

P is monic, irreducible and has a root α = r + is with rational real part

r and imaginary part s �= 0. Therefore P (z + r) is monic, irreducible, of

degree at least two and has ±is as roots. It follows from Lemma 2 that
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P (z + r) = Q(z2) for some monic irreducible polynomial Q(z) ∈ Q[z].

Since P (z) = Q((z − r)2), and Q has the negative real root −s
2, the result

follows. �

The following consequence of Theorem 1 is perhaps the most interesting

property of the polynomials in C1.

Corollary 2. All roots of a polynomial P ∈ C1 of degree at least 3 that have

rational real part have the same real part r given by the arithmetic mean of

the roots of P , namely r = tr P/ deg P . Further, we have P (r−z) = P (r+z).

Proof. If d = deg P , then Theorem 1 gives

P (z) = ((z − r)2)d/2 + [lower terms in (z − r)2] = z
d − rdz

d−1 + . . . ,

which shows that rd = tr P and, in particular, that r is unique. Finally,

P (r−z) = P (r+z) follows directly from the classification in Theorem 1. �

It will be convenient to adopt the following notation. By Corollary 2, we

know that all roots of a polynomial P ∈ C1 of degree at least 3 that have

rational real part have the same real part. We call this quantity the rational

real part of the roots of P , denoted by c1(P ).

Both Theorem 1 and Corollary 2 are illustrated by Example 1, where

Q(z) = z
2 + 3z + 1 and r = 1. The roots of Q are (−3 ±

√
5)/2, and if we

rewrite the four roots in Example 1 as

1 ±
�
−3±

√
5

2 ,

this will serve as an illustration of the product expansion P (z) =
�

d
�

j=1((z−
r)2 − βj), where the βj (j = 1, . . . , d�) are the roots of Q, which follows

immediately from Theorem 1.

Theorem 1 and Corollary 2 also provide a simple algorithm for testing

whether or not a given polynomial P has a root with rational real part.

Define r := tr P/ deg P and then expand P (z + r) to see whether it is Q(z2)

for some polynomial Q(z) ∈ Q[z]. Finally test whether Q is irreducible and

has a negative real root.

In the following corollary we provide two further simple criteria.

Corollary 3. (a) Let P ∈ C1 be of degree at least 3. Then P
�(c1(P )) = 0.

(b) Let r be rational and w1, w2 ∈ R. Two algebraic numbers r + iw1 and

r + iw2 have the same minimal polynomial if and only if w
2
1 and w

2
2 have

the same minimal polynomial.

Proof. (a) From Theorem 1, P
�(z) = 2(z − r)Q�((z − r)2), giving the result

with r = c1(P ).
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(b) We note that, by Theorem 1, if r+iw is one root of P having real part

r, then Q is the minimal polynomial of −w
2; this implies the statement. �

We see that the polynomials in Examples 1 and 2 satisfy Part (a). Indeed,

if P is as in Example 1, then P
�(z) = 2(z − 1)(2z2 − 4z + 5), while if P is

as in Example 2, then P
�(z) = 4z3.

However, note that the converse of Part (a) is not true; that is, if the

derivative of a polynomial has a rational root, this does not imply that the

given polynomial has roots with rational real part. For instance, if P is

as in Example 1, then the polynomial P (z) + 2 has the same derivative,

with r = 1 as a root. However, the roots of P (z) + 2 turn out to be 1 ±
1
2

�
2
√

3− 3± i

2

�
2
√

3 + 3, where the two instances of “±” are independent.

The polynomial therefore has no roots with rational real part, while it is

still irreducible.

We remark in passing that if the roots of a polynomial of degree d all

have the same real part r then this real part must be rational, as is seen by

looking at the polynomial’s trace, rd ∈ Q. (This was pointed out by Henri

Cohen some years ago. See also [11, Corollary 1] for an alternative, longer,

proof of this.)

4. Polynomials in C2

Having dealt with minimal polynomials of algebraic numbers having ra-

tional real part, it is natural to consider minimal polynomials of algebraic

numbers having rational imaginary part, i.e., polynomials P ∈ C2. By re-

placing a root α of such a polynomial by ᾱ, if necessary, we can confine

our attention to those α having nonnegative imaginary part. It is perhaps

not surprising that we will obtain results similar in nature to those in the

previous section.

Example 3 ([−, 1,−]). Let P (z) = z
4 + 2z3 + z

2 + 5. It is not difficult to

verify that this polynomial is irreducible, and its roots are

−1−
√

5
2 ± i,

−1+
√

5
2 ± i.

Thus it is the minimal polynomial of two different algebraic numbers with

positive rational imaginary parts. So P ∈ C2.

More generally, if r is rational and v is a totally real algebraic number

then the minimal polynomial of v + ir has all roots v
�± ir, for conjugates v

�

of v, with rational imaginary part. We notice that these rational imaginary

parts have the same absolute value. Corollary 4 below shows that this is

typical.
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Example 2 in the previous section shows that not all roots of a polyno-

mial in C2 need have rational imaginary part. Since all polynomials of odd

degree have a real root, C2 contains all irreducible polynomials of odd de-

gree. Because there are standard procedures, Sturm sequences for instance,

for determining whether a polynomial has a real root, we can restrict our de-

scription of polynomials in C2 to those having a root with positive imaginary

part.

Theorem 2 ([−, r,−]). Let P be a polynomial of degree at least 3. Then

P ∈ C2 and has a root with positive rational imaginary part if and only if

P (z) = Q(z + ir)Q(z − ir) for some positive r ∈ Q and monic irreducible

polynomial Q(z) ∈ Q[z] having a real root. In this case, P has a root with

positive rational imaginary part r.

Proof. Suppose first that P (z) = Q(z+ ir)Q(z− ir) for some nonzero r ∈ Q
and monic irreducible polynomial Q(z) ∈ Q[z] that has a real root t. Define

α = t + ir. Then α is a root of P having nonzero rational imaginary part r.

Since P is monic, and lies in Q[z], in order to complete the proof, we need

only establish that P is irreducible. We do this by showing that degQ(α) =

deg P . It is sufficient to show that α has at least deg P = 2 deg Q conjugates

over Q. But this follows from the fact that r �= 0 so that each of the deg P

numbers t
�± ir are conjugates of α where t

� runs over the deg Q conjugates

of t.

Conversely, suppose that P ∈ C2 and has a root α = t + ir with nonzero

rational imaginary part r. Define Q to be the minimal polynomial of t. Then

Q is monic, irreducible and has a real root t. Finally, P (z) = Q(z+ir)Q(z−
ir) since α is a root of the polynomial Q(z + ir)Q(z − ir) ∈ Q[z] and each

of the 2 deg Q numbers t
� ± ir, as t

� runs over the conjugates of t, are roots

of P so that deg P = 2 deg Q. �

As we did in the previous section, we now derive a number of conse-

quences from this classification theorem.

Corollary 4. All roots of a polynomial P ∈ C2 of degree at least 3 that

have positive rational imaginary part have the same positive imaginary part.

Further, if r is such an imaginary part, then P (z) divides P (z + 2ir)P (z −
2ir).

Proof. Let α = s+ir be a root of P having rational imaginary part r. Define

γ = iα = −r + is. Then γ has rational real part −r so that its minimal

polynomial lies in C1. By Corollary 2, we conclude that every conjugate of
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γ that has rational real part must have rational real part equal to −r. Since

α = −iγ, we see that the conjugates of α are among the numbers ±iγ
� where

γ
� runs over the conjugates of γ. Since �(iγ�) = −�γ

�, we conclude that each

conjugate of α having rational imaginary part has imaginary part equal to

±r. For the second part, we use Theorem 2 to write P (z) = Q(z+ir)Q(z−ir)

for a polynomial Q(z) ∈ Q[z] so that

P (z + 2ir)P (z − 2ir) = Q(z + 3ir)Q(z + ir)Q(z − ir)Q(z − 3ir)

= P (z)Q(z + 3ir)Q(z − 3ir).

The result now follows from the observation that the polynomials P (z +

2ir)P (z−2ir) and Q(z +3ir)Q(z−3ir) both have rational coefficients. �

In analogy to the notation introduced following Corollary 2, it will be

convenient to adopt the following notation. By Corollary 4, we know that

all roots of a polynomial P ∈ C2 of degree at least 3 that have nonnegative

rational imaginary part have the same imaginary part. We call this quantity

the nonnegative rational imaginary part of the roots of P , denoted by c2(P ).

Of course c2(P ) ≥ 0.

The case r = 0 of Corollary 4 provides us with the following consequence.

Corollary 5. No real algebraic number of degree at least 3 has a conjugate

with nonzero rational imaginary part.

It might seem that it should be easy to deduce results about algebraic

numbers with rational imaginary part from results about those with rational

real part, using the fact that α has rational imaginary part if and only if

iα has rational real part. This can indeed be done, and this approach has

been used to some extent in our proofs. However, the results for the minimal

polynomial of iα are not always so straightforward. In fact, the degree of

iα can be twice that of α (e.g., α = 1), equal to that of α (e.g., α = 1 + i),

or half that of α (e.g., α = i); here we have chosen examples with degrees

at most 2, for the sake of simplicity.

Berry [1] showed that all algebraic numbers with all conjugates having

imaginary part ±s were of the form u + is, where u is totally real, and s
2

is rational. See the survey article of McKee [7], where Berry’s results are

discussed and proved.

5. Polynomials in C3

In this section we consider polynomials P ∈ C3. By looking at cyclotomic

polynomials it is clear that polynomials with rational coefficients can have
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some, or in fact all, roots with rational moduli. Thus C3 is nonempty. Fur-

thermore, we will see in Corollary 6 below that, in analogy to Corollaries 2

and 4, there can only be one rational modulus realized by roots of a given

polynomial in C3.

Our next result describes the polynomials in C3.

Theorem 3 ([−,−, R]). Let P be a polynomial of degree at least 3. Then

P ∈ C3 if and only if P (z) = (Rz)n
Q(z/R + R/z) for some positive R ∈ Q

and monic irreducible polynomial Q(z) ∈ Q[z] of degree n having a real root

in the interval (−2, 2). In this case, P has a root with rational modulus R.

Proof. Suppose first that P (z) = (Rz)n
Q(z/R + R/z) for some positive

R ∈ Q and monic irreducible polynomial Q(z) ∈ Q[z] of degree n that has

a real root t ∈ (−2, 2). Then, z/R + R/z = t has two nonreal complex

conjugate roots of modulus R. These roots are roots of P , and so P has

a root with rational modulus. Finally, since these roots are quadratic over

Q(t), we see that P has the correct degree to be their minimal polynomial.

We conclude that P ∈ C3 as required.

Conversely, suppose that P ∈ C3. Then P is monic, irreducible and has

a root α with rational modulus R. It follows that R
− deg P

P (Rz) ∈ C3 and

has a root α/R of modulus 1. We are therefore reduced to the case R = 1

and α having modulus 1. In this case, we need to show that

(6) P (z) = z
n
Q(z + 1/z)

for some monic irreducible polynomial Q(z) ∈ Q[z] of degree n that has

a root α in (−2, 2). To this end, define Q(z) ∈ Q[z] to be the minimal

polynomial of α + 1/α. Then Q is monic irreducible and has the real root

α+1/α = α+α = 2�α ∈ (−2, 2). All that is left is to show that P is given

by (6). Since α is a root of the right-hand side of (6), we need only show

that the degree of α over Q is at least 2n. Since α = 1/α, and any conjugate

of α is a conjugate of α, we see that for every conjugate α
� of α, 1/α� is also

a conjugate of α. Since the quantity 2�α = α + α = α + 1/α takes on the

same value at the conjugate α
� as it does at the conjugate 1/α�, we see that

it has at most 1
2 deg P conjugates. Therefore degQ(α) ≥ 2n, as required. �

Recall that a polynomial P (z) is called reciprocal if z
deg P

P (1/z) = P (z).

Corollary 6. All roots of a polynomial P ∈ C3 of degree at least 3 that have

rational modulus have the same modulus. Further, if R is this modulus, then

P (Rz) is a reciprocal polynomial.
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Proof. Let R be the largest rational modulus represented by the roots of P .

Say |α| = R for a root α of P . Suppose that some root α2 of P has rational

modulus R2. Then,

αα = R
2
, α2α2 = R

2
2.

Applying an embedding over Q that maps α to α2 to the first equation

yields α2α3 = R
2 for some conjugate α3 of α. We therefore have

R
4 = α2α3α2α3 = α2α2α3α3 = R

2
2|α3|2.

It follows from the maximality of R that R
2 ≥ |α3|2 = R

4
/R

2
2 ≥ R

2. We

therefore have equality so that, in particular, R = R2. For the second part,

we use Theorem 3 to write

P (z) = (Rz)n
Q(z/R + R/z)

for a suitable polynomial Q(z) ∈ Q[z] of degree n. We then compute

z
deg P

P (R/z) = z
2n(R2

/z)n
Q(1/z + z)

= (R2
z)n

Q(z + 1/z) = P (Rz),

which was to be shown. �

In a similar way to the previous two sections it will be convenient to

adopt the following notation. By Corollary 6, we know that all roots of a

polynomial P ∈ C3 of degree at least 3 that have rational modulus have the

same modulus. We call this quantity the rational modulus of the roots of P ,

denoted by c3(P ). Clearly c3(P ) > 0.

Example 4. (a)([−,−, 1]) Let Q(z) = z
2 − 4z + 1, with roots 2 ±

√
3,

one of which lies in (−2, 2). Then Theorem 3 with R = 1 gives P (z) =

z
2
Q(z + 1/z) = z

4 − 4z3 + 3z2 − 4z + 1, which has two roots of modulus 1,

namely 1− 1
2

√
3 ± i

2

�
−3 + 4

√
3.

(b)([−,−, 3]) If we choose Q(z) = z
2−2z+1/4, then both roots 1± 1

2

√
3 lie

in (−2, 2), and with R = 3 (for example) we get P (z) = (3z)2
Q(z/3+3/z) =

z
4 − 6z3 + (81/4)z2 − 54z + 81, which has four roots of modulus 3, namely

3
4(2 +

√
3 ± i

�
9− 4

√
3) and

3
4(2−

√
3 ± i

�
9 + 4

√
3).

R. M. Robinson [9] found a general construction for irreducible polyno-

mials whose roots all lie on a circle with rational centre. Our construction

of P is a variant of that of Robinson, who used Q(z + R
2
/z) instead of the

more symmetric Q(z/R + R/z). (On the other hand, Robinson’s notation

made it clear that his construction also worked when only R
2, rather than

R, was rational.) Another difference is that Robinson required all roots of

Q to lie in (−2R, 2R), corresponding to our interval (−2, 2), so that all
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roots of P would have modulus R. Part (b) of the above example illustrates

his construction, in our modified normalization. Robinson also conjectured

that any irreducible polynomial having all its roots on a circle with rational

centre c must be of the form P (z− c), with P constructed in this way. This

conjecture was disproved by Ennola [3]. See also [4, 5].

An immediate consequence of Corollaries 2, 4 and 6 is the following easy

reducibility criterion.

Corollary 7. If a polynomial of degree at least 3 with rational coefficients

has roots with either

– different rational real parts, or

– rational imaginary parts of different absolute value, or

– different rational moduli,

then it is reducible over Q.

6. Polynomials in C1 ∩ C2

In this and the following two sections we classify the polynomials that

lie in the intersections of two of the classes C1, C2, C3.

Theorem 4 ([r�, r,−]). Let P be a polynomial of degree at least 3. Then

P ∈ C1 ∩ C2 if and only if

(7) P (z) =

�
Q((z − r

� + ir)2)Q((z − r
� − ir)2) if r �= 0;

Q((z − r
�)2) if r = 0,

for some r, r
� ∈ Q and some monic irreducible polynomial Q(z) ∈ Q[z]

having both a positive and a negative real root. In this case, P has a root

with rational real part r
�
and a root with rational imaginary part r.

Proof. Since for any r
� ∈ Q we clearly have that P (z) ∈ C1 ∩ C2 if and only

if P (z− r
�) ∈ C1 ∩ C2, we can assume in our proof that P has a root having

real part 0, (i.e., an imaginary root), so that c1(P ) = 0.

So suppose first that P (z) ∈ C1 ∩ C2 has a root α with imaginary part

r and a root α
� with real part 0. Then, defining γ = α − ir and applying

Lemma 1 to this equation, we get γ
� = α

�±ir for some choice of ± and some

conjugate γ
� of γ. Then γ is real and γ

� is imaginary so that, on putting

β = γ
2, β

� = γ
�2 and defining Q to be the minimal polynomial of β, we

see that Q has a positive real root β and a negative real root β
�. Hence, by

Lemma 3, the polynomial

(8)

�
Q(z2) if r = 0;

Q((z − ir)2)Q((z + ir)2) if r �= 0
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is irreducible. But α is a root of this polynomial, and hence it is the minimal

polynomial of α.

Conversely, given a monic irreducible polynomial Q having a positive

real root, β say, and a negative real root, β
� say, and a rational number r,

and defining α =
√

β + ir, we see that α is a root of the polynomial given

by (8). Again, because this polynomial is irreducible, by Lemma 3, it is the

minimal polynomial of α. Since α has imaginary part r and an imaginary

conjugate α
� = ±

√
β� ± ir, we see that the polynomial P (z) given by (8)

belongs to C1 ∩ C2. �

Example 5 ([1, 1,−]). Let P (z) = z
8−8z7+28z6−56z5+74z4−72z3+84z2−

88z+41, the minimal polynomial of 1+i+
�

1 +
√

2. Then Q(z) = z
2−2z−1,

and P has four roots with real part 1, namely 1 ± i ±
�

1−
√

2, and two

roots with imaginary part 1, namely 1 ±
�

1 +
√

2 + i. So P ∈ C1 ∩ C2.

7. Polynomials in C1 ∩ C3

In order to classify the polynomials that lie in both C1 and C3, we begin

with a general characterization.

Theorem 5. Let P ∈ C1 ∩ C3 have degree at least 3. Then either c1(P ) = 0

or c1(P ) = ±1
2c3(P ).

Proof. Suppose that P ∈ C1 ∩ C3 is of degree at least 3, has a root β with

rational real part r
� and a root with rational modulus R. We need to prove

that r
� = 0 or |r�| = R/2. Now P (±Rz) has ±β/R as a root with rational

real part ±r
�
/R and also has a root of modulus 1. Define Q to be the

polynomial corresponding to the choice of sign that gives rise to a root α

with nonnegative real part r := |r�|/R. We complete the proof by showing

that r = 0 or r = 1
2 .

We have α + α = 2r and α1α1 = 1. It follows from Lemma 1 that

for every conjugate α
� of α, both 2r − α

� and 1/α� are conjugates of α.

Consequently, the set Sα of all Q-conjugates of α is stable under the Möbius

transformations z �→ 2r − z and z �→ 1/z. Since r ≥ 0, these Möbius

transformations generate the subgroup H2r of G defined above. Now, if H2r

were infinite, then, as the H2r-orbit of α is finite, α would have to be a fixed

point of some h ∈ H2r. But this implies that α and consequently Q has

degree at most 2 over Q, which is a contradiction. We conclude that H2r is

finite so that, by Lemma 4, 2r = 0 or 2r = 1, as required. �

By Theorem 5 we see that the polynomials of degree at least 3 in C1∩C3

are split into two categories. There are those that have a purely imaginary
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root (c1(P ) = 0), and then there are those having roots with rational real

part equal to plus or minus one half of the rational modulus of their roots

(c1(P ) = ±1
2c3(P )). The next result characterizes the polynomials of the

first variety.

Theorem 6 ([0,−, R]). Let P be a polynomial of degree at least 3. Then P ∈
C1∩C3 and has a purely imaginary root if and only if P (z) = (Rz)2n

Q((z/R+

R/z)2) for some positive R ∈ Q and monic irreducible Q(z) ∈ Q[z] of degree

n having a real root in the interval (0, 4) as well as a negative real root. In

this case, P has a root with rational modulus R.

Proof. First let P ∈ C1 ∩ C3 be of degree at least 3 and have a purely

imaginary root. As in the proof of Theorem 5, we may suppose that P has

a purely imaginary root α, as well as a root α1 with modulus 1. We then

need to prove that

P (z) = z
2n

Q((z + 1/z)2)

for some polynomial Q as in the statement of the theorem. Define

s0(z) = 2 +
1

2

�

h∈H0

h
2 =

�
z +

1

z

�2

(see Lemma 4), β = s0(α) and let Q be the minimal polynomial of β. Since

α satisfies the polynomial

(9) z
4 + (2− β)z2 + 1 ∈ Q(β)[z],

we see that [Q(α) : Q(β)] ≤ 4. Thus

(10) [Q(α) : Q] = [Q(α) : Q(β)][Q(β) : Q] ≤ 4n,

where n is the degree of Q, so that α has at most 4n conjugates over Q.

But, since s0(α) is H0-invariant, we see that β is realized as s0(z) for all

four of z = α,−α, 1/α and −1/α. Thus each conjugate of β corresponds

to at least 4 conjugates of α. It follows that α has at least 4n conjugates

over Q so that, in fact, we have equality in (10). Since α is a root of the

polynomial z
2n

Q((z + 1/z)2), we can conclude by degree consideration that

P (z) = z
2n

Q((z + 1/z)2).

Now, Q is monic and irreducible. Further, as α is purely imaginary, we see

that it has β as a real negative root. Finally, as |α1| = 1, we see that it has

(α1 + 1/α1)2 = 4�(α1)2 as a real positive root lying in the interval (0, 4).

Conversely, we may suppose that R = 1 so that we are reduced to proving

that for a monic irreducible polynomial Q(z) ∈ Q[z] of degree n having a

real negative root β, as well as a real positive root β
� lying in the interval
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(0, 4), the polynomial P (z) = z
2n

Q((z + 1/z)2) lies in C1 ∩ C3 and has a

purely imaginary root. Since β < 0, the equation (z + 1/z)2 = β has purely

imaginary roots. Similarly, since β
� ∈ (0, 4), the equation (z + 1/z)2 = β

�

has nonreal roots of modulus 1. As these are roots of P and P is monic, the

proof will be complete as soon as we verify that P is irreducible. To this end,

let (α+1/α)2 = β and (α1+1/α1)2 = β
� so that α is a purely imaginary root

of P and α1 is a nonreal root of P of modulus 1. It is enough to verify that

degQ(α) = 4n. Since
√

β �∈ R and Q(β) is a real field, [Q(
√

β) : Q(β)] = 2.

Also, if α were to lie in Q(
√

β), we would be able to apply a suitable Q-

embedding that maps β to β
� to obtain α1 ∈ Q(

√
β�) ⊆ R. This would

contradict the fact that α1 is nonreal. As α is of degree at most 2 over

Q(
√

β), we can conclude that [Q(α) : Q(
√

β)] = 2. We therefore have

degQ(α) = [Q(α) : Q] = [Q(α) : Q(
�

β)][Q(
�

β) : Q(β)][Q(β) : Q]

= 2 · 2 · n = 4n,

as required. �

We illustrate Theorem 6 with the following example.

Example 6 ([0,−, 2]). Let Q(z) = z
2 − 2z − 1, with roots 1 ±

√
2, one of

which is negative, while the other one lies in (0, 4). Then P (z) = (2z)4
Q(( z

2+
2
z
)2) = z

8 +8z6 +16z4 +128z2 +256 is irreducible, has four purely imaginary

roots (and so of rational real part), namely i(±
�
−1 +

√
2±

�
3 +

√
2), and

four roots of modulus 2, namely ±
�

1 +
√

2 ± i

�
3−

√
2. So P ∈ C1 ∩ C3.

When we try to classify the second type of polynomials in C1∩C3, we can-

not guarantee the irreducibility of the characterizing polynomials. Indeed,

Example 8 below shows that reducibility can occur. (In general, reducibility

of polynomials is a difficult subject, as Schinzel’s comprehensive treatise

[10] shows.)

Theorem 7 ([±R

2 ,−, R]). Let P be a polynomial of degree at least 3. Then

P ∈ C1 ∩ C3 and c1(P ) = ±1
2c3(P ) if and only if P is irreducible and P (z)

or P (−z) is given by

(11) (Rz)2n(z −R)2n
Q(�(z/R)2)

for some positive R ∈ Q and monic irreducible polynomial Q(z) ∈ Q[z] of

degree n that has a negative real root, where � is given by (3). In this case,

P has a root with rational modulus R.

Proof. First, let P ∈ C1 ∩ C3 be of degree at least 3 and such that c1(P ) =

±1
2c3(P ). As in the proofs of Theorems 5 and 6, we may suppose that P
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has a root α with rational real part 1
2 , as well as a root α1 of modulus 1. It

is sufficient to prove that

P (z) = z
2n(z − 1)2n

Q(�(z)2)

for some monic irreducible polynomial Q(z) ∈ Q[z] of degree n that has a

negative real root. Define

s1(z) = −21
4 + 1

2

�

h∈H1

h
2 = �(z)2

(see Lemma 4), β = s1(α) and Q to be the minimal polynomial of β. Since

the image under s1 of the line �(z) = 1
2 is the interval (−∞, 0), we see that

Q has β as a negative real root. Since Q is both monic and irreducible, we

are reduced to proving that

P (z) = z
2n(z − 1)2n

Q(�(z)2).

As usual, we will prove the equality by degree considerations. In this case, we

have to show that [Q(α) : Q] = 6n. Since the equation �(α)2 = β provides

a degree 6 polynomial over Q(β) satisfied by α, we see that the index in

question is at most 6[Q(β) : Q] = 6n. On the other hand, since s1(α) is

H1-invariant, we see that β is realized as s1(z) for each of the six values

h(α) as h runs through H1. It follows that to each conjugate of β, we can

associate 6 conjugates of α so that α has at least 6n conjugates. It follows

that we have equality so that, as remarked above, the proof of this direction

is complete.

Conversely, using the same substitutions as above, we are reduced to

proving that for a monic irreducible polynomial Q(z) ∈ Q[z] of degree n

having a real negative root, the polynomial P (z) = z
2n(z−1)2n

Q(�(z)2) lies

in C1 ∩ C3 and has a root with real part 1
2 , as well as a root with modulus

1, provided it is irreducible. Since we are assuming irreducibility, and P is

monic, we are reduced to proving that it has a root with real part 1
2 as

well as a root with modulus 1. But if β is a negative real root of Q, then

�(z)2 = β has a root α with real part equal to 1
2 , and, in fact, all roots are

given by h(α) for h ∈ H1. Since two of the h(α) lie on the unit circle, we

also have a root of �(z)2 = β on the unit circle. It follows that P has roots

of the desired form. �

The following example illustrates Theorem 7.

Example 7 ([±1
2 ,−, 1]). Let Q(z) = z+23/4, and P (z) = z

2(z−1)2
Q(�(z)2)

= z
6 − 3z5 + 5z4 − 5z3 + 5z2 − 3z + 1. Then P is irreducible and has two

roots with real part
1
2 and two roots of modulus 1. If we replace z by −z, we
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get an example with zeros having real part −1
2 . Hence in both cases we have

again P ∈ C1 ∩ C3.

We now discuss the possible reducibility of the polynomial P given by

(11). As above, we can restrict our attention to the case R = 1 and P having

a root α with real part 1
2 . Then

P (z) = z
2n(z − 1)2n

Q(�(z)2),

where Q(z) ∈ Q[z] is a monic irreducible polynomial of degree n having a

negative real root β = �(α)2 = s1(α). Now, all six roots of s1(z) = β define

the same extension field Q(α) of Q(β). This is because for any other root

α
�, we have α

� = h(α) for some h ∈ H1. We examine the various possibilities

for the degree [Q(α) : Q(β)]. We first note that the index must be a positive

divisor of 6 since each of the h(α) must have the same degree over Q(β)

and they satisfy a polynomial of degree 6. Since α has rational real part

but is itself irrational, α must be nonreal. Since Q(β) is a real field, we see

that α �∈ Q(β) so that the index in question cannot equal 1. It cannot be

equal to 3 either, as we now show. If the index in question were equal to

3, then the minimal polynomial of α over Q(β) would have degree 3 and

consequently a real root. This root must be equal to one of the h(α) as h

runs through H1. However, these values consist of the two points α, 1−α on

the line �(z) = 1
2 , the two points 1/α and 1/(1−α) on the circle |z−1| = 1

and the two points α/(α− 1) and (α− 1)/α on the circle |z| = 1. The real

root would then have to be one of the real points on these curves, which

are −1, 0, 1
2 , 1 or 2. Since all of these values are rational, this is impossible.

We conclude that [Q(α) : Q(β)] = 2 or 6. We have irreducibility in case the

index is 6 and so the reducible case corresponds to [Q(α) : Q(β)] = 2.

The following is an example of the occurrence of reducibility.

Example 8. Let α = 1
2 + i

4
√

t for t ∈ N square-free. Then we have

β = s1(α) = �(α)2 = −
√

t(9 + 4
√

t)2

(1 + 4
√

t)2
∈ Q(

√
t).

As [Q(
√

t) : Q] = 2, and β is irrational, we see that [Q(β) : Q] = 2 so that

Q(β) = Q(
√

t). Now, since α is a root of the polynomial (z − 1
2)

2 +
√

t ∈
Q(
√

t)[z], we see that [Q(α) : Q(
√

t)] ≤ 2. In fact [Q(α) : Q(
√

t)] = 2, as α

is nonreal. Therefore, α has degree 2 over Q(β) so that, taking Q(z) ∈ Q[z]

of degree n to be the minimal polynomial of β, the polynomial P given by

P (z) = z
2n(z − 1)2n

Q(�(z)2)
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is reducible. In fact, calculation shows that

Q(z) = z
2 +

128t(16t− 9)

(16t− 1)2
z − t(16t− 81)2

(16t− 1)2
,

and

P (z) = z
4(z − 1)4

Q(�(z)2) =
1

16(16t− 1)2
P1(z)P2(z)P3(z),

where

P1(z) = (16t− 1)z4 + 8z3 − 24z2 + 32z − 16;

P2(z) = (16t− 1)z4 − (64t + 4)z3 + (96t− 6)z2 − (64t + 4)z + 16t− 1;

P3(z) = 16z4 − 32z3 + 24z2 − 8z − 16t + 1.

The minimal polymomial of α is
1
16P3.

8. Polynomials in C2 ∩ C3

In a similar way to Section 7 we begin the classification of the polynomials

in C2 ∩ C3 with a general result.

Theorem 8. Let P ∈ C2 ∩ C3 have degree at least 3. Then either c2(P ) = 0

or c2(P ) = 1
2c3(P ).

Proof. Assume the hypotheses, let α be a root of P with rational imaginary

part r
� and α1 be a root of P with rational modulus R. Then the minimal

polynomial P1 of iα has a root iα with rational real part −r
� and the root

iα1 with rational modulus R. It follows that P1 lies in C1 ∩ C3 so that, by

Theorem 5, we have either −r
� = 0 or −r

� = ±R/2. The result follows. �

By Theorem 8 we see that the polynomials of degree at least 3 in

C2 ∩ C3 are split into two families. There are those that have a real root

(c2(P ) = 0), and then there are those having roots with nonnegative ratio-

nal imaginary part equal to one half of the rational modulus of their roots

(c2(P ) = 1
2c3(P )). The next result characterizes the polynomials of the first

family.

Theorem 9 ([−, 0, R]). Let P be a polynomial of degree at least 3. Then

P ∈ C2 ∩ C3 and has a real root if and only if P (z) = (Rz)n
Q(z/R + R/z)

for some positive R ∈ Q and monic irreducible polynomial Q(z) ∈ Q[z] of

degree n having a real root inside the interval (−2, 2), as well as a real root

outside the interval (−2, 2). In this case, P has a root with rational modulus

R.
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Proof. First, let P ∈ C2 ∩ C3 be of degree at least 3 and have a real root.

Suppose that P has a real root α and a root α1 of modulus R. By Theorem

3, we know that P can be written in the desired form, and that the resulting

polynomial Q will have a root lying inside the interval (−2, 2). In fact, from

the proof of Theorem 3, we can take Q to be the minimal polynomial of
α1
R

+ R

α1
∈ (−2, 2). Since Q is then also the minimal polynomial of α

R
+ R

α
,

which lies outside the interval (−2, 2), Q also has a root lying outside this

interval.

Conversely, we may suppose, as above, that R = 1. We are therefore

reduced to proving that for a monic irreducible polynomial Q(z) ∈ Q[z] of

degree n having a root inside the interval (−2, 2) as well as a root outside

this interval, the polynomial P given by

P (z) = z
n
Q(z + 1/z)

lies in C2 ∩ C3 and has a real root. Suppose then that β �∈ (−2, 2) and

β
� ∈ (−2, 2) are real roots of Q. The equation z + 1/z = β has a real root

α which must then be a root of P . Also, the equation z + 1/z = β
� has

a complex root α
� of modulus 1 which must be a root of P . The result

will then follow once we establish irreducibility. We will accomplish this

by showing that the degree of α
� over Q is equal to 2n so that P has

the correct degree to be the minimal polynomial of α
� and therefore be

irreducible. Since α
� is nonreal and Q(β�) is a real field, we see that α

� �∈
Q(β�). Consequently, [Q(α�) : Q(β�)] ≥ 2. On the other hand, α

� satisfies the

polynomial z
2−β

�
z +1 ∈ Q(β�)[z] so that [Q(α�) : Q(β�)] ≤ 2. We therefore

have equality, so that

[Q(α�) : Q] = [Q(α�) : Q(β�)][Q(β�) : Q] = 2[Q(β�) : Q] = 2n,

as required. �

Theorem 9 is illustrated by the following example.

Example 9 ([−, 0, 2]). Let Q(z) = z
2−2z−1, with roots 1±

√
2, one of which

lies in (−2, 2), while the other one does not. Then P (z) = (2z)2
Q( z

2 + 2
z
) =

z
4−4z3 +4z2−16z +16 is irreducible, has two real roots (and so of rational

imaginary part), namely 1 +
√

2 ±
�
−1 + 2

√
2, and two roots of modulus

2, namely 1−
√

2 ± i

�
1 + 2

√
2. Hence P ∈ C2 ∩ C3.

When we try to classify the second type of polynomials in C2∩C3, as in the

previous section we cannot guarantee the irreducibility of the characterizing

polynomials, as Example 11 below shows.
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Theorem 10 ([−,
R

2 , R]). Let P be a polynomial of degree at least 3. Then

P ∈ C2 ∩ C3 and c2(P ) = 1
2c3(P ) if and only if P is irreducible and has the

form

(12) P (z) = (Rz)2n(z2 + R
2)n

Q(−i�(iz/R))Q(i�(−iz/R))

for some positive R ∈ Q and monic irreducible polynomial Q(z) ∈ Q[z] of

degree n that has a nonzero real root, where � is given by (3). In this case,

P has a root with rational modulus R.

Proof. First, let P ∈ C2 ∩ C3 be of degree at least 3 and such that c2(P ) =
1
2c3(P ). As above it is sufficient to assume that R = c3(P ) = 1. We then

need to prove

(13) P1(z) = z
2n(z2 + 1)n

Q(−i�(iz))Q(i�(−iz))

for some monic irreducible polynomial Q(z) ∈ Q[z] of degree n that has a

nonzero real root. In order to prove (13), we proceed as follows.

Write α = γ + i/2, where γ is real and algebraic. Then α
∗ = γ

∗+εi/2 for

some conjugate γ
∗ of γ and ε = ±1. Define H(z1, z2, z3) = (z1 + εz3/2)(z2−

εz3/2) − 1. Then H(γ∗, γ∗, i) = 0. By Corollary 1, we see that to each

conjugate γ
� of γ, we can associate conjugates γ

�� and γ
��� of γ such that

(γ� + i/2)(γ�� − i/2) = 1;

(γ� − i/2)(γ��� + i/2) = 1.

Solving these equations for γ
�� and γ

��� yields γ
�� = F (γ�) and γ

��� = F (γ�),

where F is given by (4) and F is its conjugate given by

F (z) =
− i

2z + 3
4

z − i

2

.

Therefore, both F and F preserve the set of conjugates of γ. Now put

f(w) = w + F (w) + F (w) =
w(w2 + 9

4)

w2 + 1
4

,

and define β = f(γ) and Q(z) ∈ Q[z] to be the minimal polynomial of β.

A calculation shows that F ◦ F = F and F ◦ F is the identity map. Thus

f(F (z)) = f(z). It can also be verified that f(z ± i/2) = ∓i�(±iz) so that

α satisfies the numerator of Q(f(z + i/2))Q(f(z− i/2)) which is the monic

polynomial in Q[z] given by

z
2n(z2 + 1)n

Q(−i�(iz))Q(i�(−iz)),

where n is the degree of Q. Since Q has β as a nonzero real root, we are

reduced to proving that α has degree 6n over Q. Since α = γ + i/2 and γ

is real, we have degQ(α) = 2 degQ(γ) = 2[Q(γ) : Q(β)]n. We therefore need
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to prove that γ has degree three over Q(β). Since γ satisfies the polynomial

z
3−βz

2 + 9
4z−

1
4β ∈ Q(β)[z], we see that the index in question is at most 3.

Conversely, β is realized as f(z) for each of z = γ, z = F (γ) and z = F (γ).

It follows that each conjugate β
� of β corresponds to at least 3 conjugates

of γ. Therefore, [Q(γ) : Q(β)] ≥ 3. We therefore have equality so that the

proof of this direction is complete.

Conversely, we can suppose that R = 1 so that P is given by

P (z) = z
2n(z2 + 1)n

Q(−i�(iz))Q(i�(−iz))

for some monic irreducible polynomial Q(z) ∈ Q[z] of degree n that has a

nonzero real root β. Since P is monic, and we are assuming irreducibility,

it suffices to show that P has a root α
∗ of modulus 1 and a root α with

imaginary part 1
2 . We do this by verifying that i�(−iz) = β has roots of the

desired form. If we square both sides, we obtain the equation �(−iz)2 = −β
2.

Since the right-hand side is negative, we know from the proof of Theorem 7

that this equation has six solutions for −iz given by h(γ) as h runs through

H1 and γ has real part equal to 1
2 . Multiplying by i gives us six solutions

for z, two of which have imaginary part equal to 1
2 and two of which lie on

the unit circle. �

The following example illustrates Theorem 10.

Example 10 ([−,
1
2 , 1]). Let Q(z) = z − 1, and, for � as defined in Theo-

rem 10,

P (z) = z
2(z2 + 1)Q(−i�(iz))Q(i�(−iz))

= z
2(z2 + 1)(−i�(iz)− 1)(i�(−iz)− 1)

= z
6 − 2z5 + (25/4)z4 − 6z3 + (25/4)z2 − 2z + 1.

Then P is irreducible and has one root with imaginary part
1
2 , and two roots

of modulus 1. Again P ∈ C2 ∩ C3.

The next example shows that reducibility can occur in this situation

as well. In fact, remarks similar to those immediately following Example 7

apply here too.

Example 11. Let α = 4
√

t + i/2 for a square-free integer t > 1. Then we

have

β = s( 4
√

t) = i�(−iα) =
4
√

t(9 + 4
√

t)

1 + 4
√

t
,

and β satisfies the polynomial

Q(z) = z
4 − 128t(16t− 9)

(16t− 1)2
z

2 − t(16t− 81)2

(16t− 1)2
∈ Q[z].
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The discriminant of Q (as a quadratic in z
2
) is 4t(256t2 + 736t + 81)2

,

which for a square-free integer t > 1 cannot be a perfect square. Hence Q is

irreducible as a polynomial in z
2
and thus in z, and is therefore the minimal

polynomial of β. Note that γ = 4
√

t has the same degree over Q as β, so that

[Q(γ) : Q(β)] = 1. The fact that this index is not equal to 3 implies that we

do in fact obtain a reducible polynomial P . Calculation using Maple shows

that, in fact,

P (z) = z
8(z2 + 1)4

Q(−i�(iz))Q(i�(−iz)) =
1

256(16t− 1)4
P1(z)P2(z)P3(z),

where

P1(z) = (16t− 1)2
z

8 + (768t + 16)z6 − (512t− 96)z4 + 256z2 + 256;

P2(z) = (16t− 1)2
z

8 + (1024t2 + 896t + 4)z6 + (1536t2 − 2240t + 6)z4

+ (1024t2 + 896t + 4)z2 + (16t− 1)2;

P3(z) = 256z8 + 256z6 − (512t− 96)z4 + (768t + 16)z2 + (16t− 1)2
.

The minimal polynomial of α is
1

256P3.

9. Polynomials in C1 ∩ C2 ∩ C3.

In this final section we study polynomials that are simultaneously mini-

mal polynomials for an algebraic number of rational real part, an algebraic

number of rational imaginary part and an algebraic number of rational

modulus.

We know from Theorems 5 and 8 that for P ∈ C1 ∩ C2 ∩ C3 of degree

at least 3, we have c1(P ) = 0 or c1(P ) = ±1
2c3(P ) and c2(P ) = 0 or

c2(P ) = 1
2c3(P ). We now separate the four cases.

Theorem 11 ([0, 0, R]). Let P be a polynomial of degree at least 3. Then

P ∈ C1∩C2∩C3, and has both a real root and a purely imaginary root if and

only if P is of the form P (z) = (Rz)2n
Q((z/R + R/z)2) for some positive

R ∈ Q and monic irreducible polynomial Q(z) ∈ Q[z] of degree n that has a

real root in each of the intervals (−∞, 0), (0, 4), (4,∞). In this case, P has

a root with rational modulus R.

Proof. Suppose first that P ∈ C1 ∩ C2 ∩ C3 and has both a real root and a

purely imaginary root. Applying Theorem 6, we know that

P (z) = (Rz)2n
Q((z/R + R/z)2)

for some positive R ∈ Q and monic irreducible polynomial Q(z) ∈ Q[z]

of degree n that has a root in each of the intervals (−∞, 0) and (0, 4).

We complete the proof of this direction by establishing that Q also has
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a root in the interval (4,∞). But this follows from the hypothesis that

Q((z/R+R/z)2) = 0 has a real root, which must be irrational, and therefore

must correspond to a value of (z/R + R/z)2 that is greater than 4.

Conversely, suppose that P (z) = (Rz)2n
Q((z/R + R/z)2) for some pos-

itive R ∈ Q and monic irreducible polynomial Q(z) ∈ Q[z] of degree n

that has a real root in each of the intervals (−∞, 0), (0, 4), (4,∞). Then, by

Theorem 6, we know that P ∈ C1 ∩ C3. All that is left to prove is that P

has a real root. But this follows from the fact that for a root t > 4 of Q,

the equation (z/R + R/z)2 = t has a real solution. �

Theorem 11 is illustrated by the following example.

Example 12 ([0, 0, 1]). Let Q(z) = z
3 − 4z2 − 4z + 8, with roots 2 +

4 cos(2πk/7) (k = 1, 2, 3), which lie in the intervals (−∞, 0), (0, 4), (4,∞),

respectively. Then P (z) = z
6
Q((z + 1/z)2) = z

12 + 2z10− 5z8− 4z6− 5z4 +

2z2+1 is irreducible, has four imaginary roots (and so of rational real part),

four real roots (and so of rational imaginary part), and four roots of modulus

1. Hence P ∈ C1 ∩ C2 ∩ C3.

As in several cases in Sections 7 and 8, we cannot guarantee the irre-

ducibility of the polynomial P . Further remarks on this can be found at the

end of this section.

Theorem 12 ([0, R

2 , R]). Let P be a polynomial of degree at least 3. Then

P ∈ C1∩C2∩C3 has a purely imaginary root and is such that c2(P ) = 1
2c3(P )

if and only if P is irreducible and has the form

(14) P (z) = (Rz)4n(z2 + R
2)2n

Q(−�(iz/R)2)Q(−�(−iz/R)2)

for some positive R ∈ Q and monic irreducible polynomial Q(z) ∈ Q[z] of

degree n that has both a real positive root and a real negative root, where �

is given by (3). In this case, P has a root with rational modulus R.

Proof. Suppose first that P ∈ C1 ∩ C2 ∩ C3 has a purely imaginary root and

is such that c2(P ) = 1
2c3(P ). By Theorem 10, we know that P has the form

P (z) = (Rz)2 deg Q1(z2 + R
2)deg Q1Q1(−i�(iz/R))Q1(i�(−iz/R))

for some positive R ∈ Q and monic irreducible polynomial Q1(z) ∈ Q[z]

that has a nonzero real root β. By hypothesis, P (iγ) = 0 for some irrational

γ ∈ R. It follows that one of −i�(−γ/R) and i�(γ/R) is a root of Q1. In any

case, Q1 has a purely imaginary root. Since its negative must also be a root

of Q1, we see from Lemma 2 that Q1(z) = Q(z2) for some monic irreducible
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polynomial Q(z) ∈ Q[z]. Since this implies that

P (z) = (Rz)4n(z2 + R
2)2n

Q(−�(iz/R)2)Q(−�(−iz/R)2),

where n is the degree of Q, we are reduced to proving that Q has both a

positive real root and a negative real root. But this follows from the fact

that Q1 has both a nonzero real root and a nonzero purely imaginary root.

Conversely, suppose that P is irreducible, of degree at least 3 and has

the form

P (z) = (Rz)4n(z2 + R
2)2n

Q(−�(iz/R)2)Q(−�(−iz/R)2)

for some positive R ∈ Q and monic irreducible polynomial Q(z) ∈ Q[z] of

degree n that has both a positive real root β and a negative real root γ.

Defining Q1(z) = Q(z2), we have Q1(iz) = Q1(−iz) = Q(−z
2). We can

therefore write

P (z) = (Rz)2 deg Q1(z2 + R
2)deg Q1Q1(−i�(iz/R))Q1(i�(−iz/R)),

where Q1 has a nonzero real root. We can therefore apply Theorem 10 to

conclude that P ∈ C2 ∩ C3 and that c2(P ) = 1
2c3(P ). The proof is com-

pleted by noticing that the equation −�(iz/R)2 = γ has a purely imaginary

solution z. �

Theorem 12 is illustrated by the following example.

Example 13 ([0, 1
2 , 1]). Let Q(z) = z

2− z− 1, with roots (1±
√

5)/2, (one

positive and one negative), and

P (z) = z
8(z2 + 1)4

Q(−�(iz)2)Q(−�(−iz)2)

= 1
256

�
256z24 + 4864z22 + 39136z20 + 175920z18 + 484345z16

+856564z14 + 1023126z12 + 856564z10 + 484345z8 + 175920z6

+39136z4 + 4864z2 + 256
�
.

Then P has 12 imaginary roots (and so of rational real part), two roots of

imaginary part
1
2 , and four roots of modulus 1. Again P ∈ C1 ∩ C2 ∩ C3.

Theorem 13 ([±R

2 , 0, R]). Let P be a polynomial of degree at least 3. Then

P ∈ C1 ∩ C2 ∩ C3, has a real root and is such that c1(P ) = ±1
2c3(P ) if and

only if P is irreducible and one of P (z) or P (−z) is given by

(Rz)2n(z −R)2n
Q(�(z/R)2)

for some positive R ∈ Q and monic irreducible polynomial Q(z) ∈ Q[z] of

degree n that has both a positive real root and a negative real root. In this

case, P has a root with rational modulus R.
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Proof. Suppose first that P ∈ C1 ∩ C2 ∩ C3, has a real root and is such that

c1(P ) = ±1
2c3(P ). By Theorem 7, we know that one of P (z), P (−z) is of

the form

(Rz)2n(z −R)2n
Q(�(z/R)2)

for some positive R ∈ Q and monic irreducible polynomial Q(z) ∈ Q[z] of

degree n that has a negative real root. Finally, the fact that P has a real

root implies that Q has a positive real root.

Conversely, suppose that P is irreducible and P (z) or P (−z) has the

form

(Rz)2n(z −R)2n
Q(�(z/R)2)

for some positive R ∈ Q and monic irreducible polynomial Q(z) ∈ Q[z] of

degree n that has both a positive real root and a negative real root. We know

from Theorem 7 that P lies in C1∩C3 and is such that c1(P ) = ±1
2c3(P ). We

are left with verifying that P has a real root. But this follows from setting

�(z/R)2 equal to a positive real root of Q and extracting a real root z from

the resulting equation. �

The following example illustrates Theorem 13.

Example 14 ([−1, 0, 2]). Let Q(z) = z
2−z−1, with roots (1±

√
5)/2 (one

positive and one negative). Then

P (z) = (2z)4(z + 2)4
Q(�(−z/2)2)

= z
12 + 12z11 + 26z10 − 180z9 − 755z8 + 392z7 + 4600z6

+ 1568z5 − 12080z4 − 11520z3 + 6656z2 + 12288z + 4096

is irreducible, has two roots with real part −1, and six real roots (and so of

rational imaginary part) and two roots of modulus 2. Again P ∈ C1∩C2∩C3.

Theorem 14 ([±R

2 ,
R

2 , R]). Let P be a polynomial of degree at least 3. Then

P ∈ C1 ∩ C2 ∩ C3, and is such that c1(P ) = ±1
2c3(P ) and c2(P ) = 1

2c3(P ) if

and only if P is irreducible and P (z) or P (−z) is given by

(Rz/2)4n(z −R)4n(z2 + R
2)2n(z2 − 2Rz + 2R2)2n

(15)

× (2z2 − 2Rz + R
2)2n

Q
�
s
�

1
2 (2z/R− 1 + i)2��

Q
�
s
�

1
2 (2z/R− 1− i)2��

for some positive R ∈ Q and monic irreducible polynomial Q(z) ∈ Q[z] of

degree n that has a real root, where

(16) s(w) =
w

6 + 3w5 + 33w4 + 6w3 − 33w2 + 3w − 1

w(w2 + 1)2
.

In this case, P has a root with rational modulus R.
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Proof. Suppose first that P ∈ C1∩C2∩C3, and is such that c1(P ) = ±1
2c3(P )

and c2(P ) = 1
2c3(P ). As above, we may suppose that R = 1 and that

c1(P ) = c2(P ) = 1
2 . It is sufficient to prove that

P (z) = (z/2)4n(z − 1)4n(z2 + 1)2n(z2 − 2z + 2)2n

× (2z2 − 2z + 1)2n
Q

�
s
�

1
2 (2z − 1 + i)2��

Q
�
s
�

1
2 (2z − 1− i)2��

for some monic irreducible polynomial Q(z) ∈ Q[z] of degree n that has

a real root. Suppose that α = γ + i/2 and α
� with real part equal to 1

2

are roots of P . Applying Lemma 1 to a polynomial corresponding to the

equation α
�+α� = 1 yields α+α

�� = 1 for some conjugate α
�� of α. Applying

a Q-embedding that maps α to α
�� to the equation α = γ + i/2 shows that

one of α
�� + i/2 and α

�� − i/2 is a conjugate of γ. That is, either 1 − γ or

1− γ − i is a conjugate of γ. However, as 1− γ ∈ R,

degQ(1− γ − i) = 2 degQ(1− γ) = 2 degQ(γ).

Consequently, 1− γ − i is not a conjugate of γ and so 1− γ is a conjugate

of γ. We recall as well from the proof of Theorem 10 that the quantity

F (γ) where F is given by (4) is also a conjugate of γ. Therefore, for every

conjugate γ
� of γ, both F (γ�) and 1 − γ

� are conjugates of γ. We conclude

that the group H given by Lemma 5 acts on the set Sγ of Q-conjugates of

γ. This gives us the 12 conjugates {h(γ)}h∈H of γ having sums of squares

equal to

β := s((2γ − 1)2
/2),

where s is given by (5):

s(w) =
v(w)3 + 3v(w)2 + 36v(w) + 12

v(w)2 + 4
, v(w) = w − 1/w.

This works out to be the same as is given in (16). By H-invariance, the

12 members of the set {h(γ)}h∈H are the solutions to the equation s((2z −
1)2

/2) = β. We now take Q to be the minimal polynomial of β. Since γ =

α− i/2, we see that α is a root of Q(s((2z− i−1)2
/2)). It is therefore also a

root of the numerator of the rational function Q(s((2z+i−1)2
/2))Q(s((2z−

i− 1)2
/2)), which has rational coefficients. This numerator is given by the

special case of the right-hand side of (15) that we are considering. On

comparing degrees, we see that this polynomial is the minimal polynomial

of α and therefore equal to P . Indeed, deg P = degQ(α) = 2 degQ(γ) =

2 · 12 degQ(β) = 24n = the degree of the right-hand side of (15). Finally,

since Q has β as a real root, the proof of this direction is complete.
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Conversely, we will for simplicity assume, as above, that R = 1 and that

the irreducible polynomial P is given by

P (z) = (z/2)4n(z − 1)4n(z2 + 1)2n(z2 − 2z + 2)2n

(2z2 − 2z + 1)2n
Q

�
s
�

1
2 (2z − 1 + i)2��

Q
�
s
�

1
2 (2z − 1− i)2��

for some monic irreducible polynomial Q(z) ∈ Q[z] of degree n that has a

real root β. Studying the graph of s((2z − 1)2
/2) shows that the equation

s((2z−1)2
/2) = β always has a real root γ. The set of all roots is then given

by {h(γ)}h∈H . Now define α = γ + i/2, so that α has imaginary part 1
2 . It is

sufficient to show that α has a conjugate with real part equal to 1
2 as well as

a conjugate of modulus 1. Now α
� := F (γ) + i/2 is a conjugate of α having

modulus 1, and so 1/α� = α� is also a conjugate of α. Further, as 1 − γ is

a conjugate of γ, 1 − α is a conjugate of α. It follows that the set Sα of

conjugates of α is closed under the maps z �→ 1/z and z �→ 1−z. Composing

these maps yields the conjugate α
�� = (1/z) ◦ (1− z)(α�) = 1/(1− α

�) that

has real part equal to 1
2 . The proof is therefore complete. �

Our final example illustrates Theorem 14.

Example 15 ([12 ,
1
2 , 1]). Let Q(z) = z, and so, using (15),

P (z) =
1

16
(16z24 − 192z23 + 1200z22 − 5104z21 + 16644z20 − 44472z19

+ 100856z18 − 197028z17 + 333669z16 − 492808z15 + 640944z14

− 743916z13 + 780398z12 − 743916z11 + 640944z10 − 492808z9

+ 333669z8 − 197028z7 + 100856z6 − 44472z5 + 16644z4 − 5104z3

+ 1200z2 − 192z + 16)

has four roots with real part
1
2 , two roots with imaginary part

1
2 and four

roots of modulus 1. It is irreducible. Again P ∈ C1 ∩ C2 ∩ C3.

As in some of the cases in Sections 7 and 8, we cannot guarantee the

irreducibility of the polynomials P given in Theorems 12, 13 and 14. It turns

out that Examples 11 and 8, respectively, may also serve as examples for

the first two cases.

In fact, the polynomial Q in Example 11 always has a positive zero as

polynomial in z
2, and thus it has both a real positive and a real negative

zero as a polynomial in z. It therefore satisfies the conditions of Theorem 12.

Similarly, the polynomial Q in Example 8 has a real negative root, namely

β, with the second root being its conjugate which has to be real and positive

in this case. Hence Q satisfies the conditions of Theorem 13, which means

that Example 8 is indeed an example of reducibility also in this case.
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Finally, using Q(z) = z − k in Theorem 14 (where the case k = 0 is

dealt with in Example 15), a calculation with Maple for k in the range

−10 000 ≤ k ≤ 10 000 shows that P is reducible only for k = −7, 3 and 13.
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