
ASYMPTOTICS OF THE WEIGHTED DELANNOY NUMBERS

ROB NOBLE

Abstract. The weighted Delannoy numbers give a weighted count of lattice

paths starting at the origin and using only minimal east, north and northeast

steps. Full asymptotic expansions exist for various diagonals of the weighted
Delannoy numbers. In the particular case of the central weighted Delannoy

numbers, certain weights give rise to asymptotic coefficients that lie in a num-

ber field. In this paper we apply a generalization of a method of Stoll and
Haible to obtain divisibility properties for the asymptotic coefficients in this

case. We also provide a similar result for a special case of the diagonal with

slope 2.

1. Introduction

Asymptotic expansions of sequences are normally considered to be purely an-
alytic objects. However, in several instances, when a sequence admitting an as-
ymptotic expansion is of number theoretic origin, the coefficients that appear in
the expansion possess striking arithmetic properties. Unexpectedly, the asymptotic
coefficients are often restricted to all lie in a particular number field, and, in fact,
have denominators that are only divisible by primes lying in some finite set. As a
particular example, the central Delannoy numbers have an asymptotic expansion
whose coefficients all lie in Q(

√
2) and have denominators equal to some power of

the prime
√

2Z[
√

2].
It is pleasing that if we start with number theoretic objects such as combinato-

rial sums then we obtain number theoretic objects in the expansion. Apart from
the unpublished manuscript [12] of Stoll and Haible, this phenomenon has not been
investigated and begs an explanation. In a previous paper [9], certain number fields
that contain all of the asymptotic coefficients have been found for combinatorial
sums related to weighted Delannoy numbers, and the present paper aims to fur-
ther the understanding of these coefficients by determining a finite set of primes
containing all those that can appear in their denominators.

Fix α, β, γ ∈ C. We consider paths that start at the origin, remain in the first
quadrant and use only the steps (1, 0) with weight α, (0, 1) with weight β and (1, 1)
with weight γ. The weight of a path is then the product of the weights of the
individual steps that comprise the path. For r, s ∈ N0, let ur,s denote the total of
all of the weights of paths that connect the origin to the point (r, s). The ur,s are
known as the weighted Delannoy numbers and are given by the recurrence relation

ur+1,s+1 = αur,s+1 + βur+1,s + γur,s (r, s ≥ 0)
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subject to the initial conditions

ur,0 = αr (r ≥ 0), u0,s = βs (s ≥ 0).

We have the closed form expression

ur,s =

r∑
k=0

(
r

k

)(
s

k

)
αr−kβs−k(αβ + γ)k

(see [5, p. 87]).
In [9] a multivariate method of Pemantle and Wilson (see [10, 14]) was combined

with a transfer method developed in the book of Flajolet and Sedgewick [4, Part B]
to obtain asymptotic expansions for the univariate sequences ur,ar as r → ∞ for
a ∈ N in the case αβa = 1 and γ/αβ ∈ Z. Inspection of the arguments used in
[9] shows that in the case a = 1, we only require the condition γ/αβ ∈ R. Since
allowing αβ 6= 1 simply multiplies a corresponding binomial sum considered in
[9] by αrβr, full asymptotic expansions can be obtained for the central weighted
Delannoy numbers ur,r in this more general setting.

The purpose of the present paper is to obtain divisibility properties for the
asymptotic coefficients one obtains for ur,r in the case when αβ 6= 0 and γ/αβ ∈
R ∩ Q. We also treat the case of ur,2r when γ = −9αβ. In both cases we proceed
by applying a generalized version (Proposition 4 below) of a method of Stoll and
Haible that appears in [12]. The sequences of interest are then the central weighted
Delannoy numbers ur,r given by

ur,r =

r∑
k=0

(
r

k

)2

αr−kβr−k(αβ + γ)k,

as well as the special case of ur,2r, obtained by setting γ = −9αβ, that is given by

αrβ2r
r∑

k=0

(−1)k
(
r

k

)(
2r

k

)
8k.

For the central weighted Delannoy numbers the case αβ = 0 leads to ur,r = γr

which is not of interest. This is why we restrict our attention to the case αβ 6= 0.
Further, with d := 1 + γ/αβ, if d = 0 then ur,r = αrβr. This case also fails to be
of interest and so we assume that d 6= 0. In order to state the results, we will need
to make clear what is meant by prime divisors and the denominator of an element
lying in a number field. So let K be a number field with ring of integers OK and
δ ∈ K∗. We have

δOK =
∏
p

pvp(δ)

where the product is over all nonzero prime ideals p of OK (the primes of K) and
the uniquely determined exponents vp(δ) are integers, all but finitely many of which
are equal to zero. The prime divisors of δ are the primes p of K for which vp(δ) > 0

and by the denominator of δ, we mean the product of p−vp(δ) over all primes p of
K for which vp(δ) < 0.

We have the following result which is proved in Section 3.
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Proposition 1. With the above notation and as r →∞ there exists an asymptotic
expansion

ur,r ∼ αrβr
(1 +

√
d)2r+1

2 4
√
d
√
πr

(
1 +

∞∑
`=1

µ`
r`

)
if d > 0, and

ur,r ∼ αrβr
(1 +

√
d)2r+1

2 4
√
d
√
πr

(
1 +

∞∑
`=1

µ`
r`

)
+ αrβr

(1−
√
d)2r+1

2 4
√
d
√
πr

(
1 +

∞∑
`=1

µ`
r`

)

if d < 0, where the constants µ` ∈ Q(
√
d) and 4

√
· denotes the principal branch of

the fourth root. Further, if d is algebraic then the µ` are such that the only primes
of Q(

√
d) that can divide their denominators are the prime divisors of 2 and the

prime divisors of
√
d.

The special case αβ = γ = 1 gives rise to the central Delannoy numbers. In [2],
the first few coefficients of the resulting expansion are computed: As r → ∞ we
have

ur,r ∼
(3 + 2

√
2)r

2
√

(3
√

2− 4)πr

(
1− 23

16(8 + 3
√

2)

1

r
+

2401

1024(113 + 72
√

2)

1

r2
+ ...

)
.

If we rewrite this as

ur,r ∼
(3 + 2

√
2)r

2
√

(3
√

2− 4)πr

(
1− 8− 3

√
2

32r
+

113− 72
√

2

1024r2
+ ...

)
(r →∞),

we see that the first few coefficients are equal to an element of Z[
√

2] divided by a

power of 2. If we factor these coefficients over Q(
√

2), we see that
√

2Z[
√

2] is the
only prime that divides the denominators of these coefficients. Proposition 1 tells
us that this pattern continues so that, once factored over Q(

√
2), the denominators

of the asymptotic coefficients are all powers of
√

2Z[
√

2].
We can also obtain divisibility properties for the asymptotic coefficients in the

case of ur,2r when γ = −9αβ. The result, which is also proved in Section 3, is the
following.

Proposition 2. With the above notation, set γ = −9αβ. There exist constants µ`,
η` ∈ Q for ` ∈ N, the denominators of which are divisible only by the primes 2 and
3 such that, as r →∞,

ur,2r ∼
(−27αβ2)r

22/3Γ(2/3)r1/3

(
1 +

∞∑
`=1

µ`
r`

)
+

(−27αβ2)r

24/3Γ(1/3)r2/3

(
1 +

∞∑
`=1

η`
r`

)
.

For a general discussion of asymptotics of lattice paths see [1]. For more on the
Delannoy numbers, see [2, 3, 11, 13] and for more on weighted lattice paths see
[5, 6].

2. A generalization of the method of Stoll and Haible

Fix ϕ ∈ Q and q ∈ N. Let F denote the C-vector space of all generating functions
F (x) =

∑∞
r=0 frx

r ∈ C[[x]] such that fr admits a full asymptotic expansion of the
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form

(1) fr ∼ r−ϕ
∞∑

m=N

am
rm/q

(r →∞)

for some integer N and sequence {am}m≥N ⊆ C. With this notation, and denoting
the space of all finite-tailed Laurent series by the usual C((x)), we define a C-linear
transformation Ψ : F → xϕC((x1/q)) as follows. Given F ∈ F with coefficient
sequence {fr}r≥0 satisfying (1), we set

Ψ(F ) =

∞∑
k=N

ak
Γ(ϕ+ k/q)

log(1 + x)ϕ+k/q−1 ∈ xϕC((x1/q)).

Here we are considering division by Γ as being defined to be multiplication by the
entire function 1/Γ. Our transformation Ψ is therefore well-defined. The following
result was proved in [12, Theorem 2] for ϕ = 0, but the proof of the general case is
completely analogous. For completeness, we include the proof below.

Proposition 3. With the above notation, the linear transformation Ψ satisfies the
following properties.

(a) Ψ(xF (x)) = (x+ 1)Ψ(F (x)).
(b) Ψ

(
d
dxF (x)

)
= d

dxΨ(F (x)).
(c) If F is a polynomial then Ψ(F (x)) = 0.

Proof. Let F (x) have coefficient sequence {fr}r≥0 that satisfies (1).
(a) Defining f−1 := 0, the generating function xF (x) has coefficient sequence

{fr−1}r satisfying

fr−1 ∼ (r − 1)−ϕ
∞∑

m=N

am
(r − 1)m/q

(r →∞).

We now rewrite this asymptotic series in terms of r rather than r−1. We find that

(r − 1)−ϕ
∞∑

m=N

am
(r − 1)m/q

=

∞∑
m=N

amr
−ϕ−m/q

(
1− 1

r

)−ϕ−m/q
=

∞∑
m=N

amr
−ϕ−m/q

∞∑
j=0

(
−ϕ−m/q

j

)
(−1)jr−j

= r−ϕ
∞∑

m=N

bm−N
q c∑
j=0

am−qj

(
ϕ+m/q − 1

j

)
r−m/q.

Therefore

Ψ(xF (x)) =

∞∑
k=N

b k−N
q c∑
j=0

ak−qj

(
ϕ+ k/q − 1

j

)
1

Γ(ϕ+ k/q)
log(1 + x)ϕ+k/q−1.
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On the other hand, we have

(x+ 1)Ψ(F (x)) = exp(log(1 + x))Ψ(F (x))

=

( ∞∑
k=0

log(1 + x)k

k!

)( ∞∑
k=N

ak
Γ(ϕ+ k/q)

log(1 + x)ϕ+k/q−1

)

=

∞∑
k=N

b k−N
q c∑
j=0

ak−qj
j!Γ(ϕ+ k/q − j)

log(1 + x)ϕ+k/q−1.

The proof is then completed by noticing that(
ϕ+ k/q − 1

j

)
1

Γ(ϕ+ k/q)
=

1

j!Γ(ϕ+ k/q − j)
.

(b) From (a), it is sufficient to verify that Ψ
(
x d
dxF (x)

)
= (x+ 1) d

dxΨ(F (x)). To

this end, we start by noticing that the coefficient sequence of x d
dxF (x) is {rfr}r,

having asymptotic expansion

rfr ∼ r−ϕ
∞∑

m=N−q

am+q

rm/q
(r →∞).

Therefore

Ψ

(
x
d

dx
F (x)

)
=

∞∑
k=N−q

ak+q

Γ(ϕ+ k/q)
log(1 + x)ϕ+k/q−1.

On the other hand, we have

(x+ 1)
d

dx
Ψ(F (x)) = (x+ 1)

∞∑
k=N

ak(ϕ+ k/q − 1)

Γ(ϕ+ k/q)

log(1 + x)ϕ+k/q−2

1 + x

=

∞∑
k=N−q

ak+q

Γ(ϕ+ k/q)
log(1 + x)ϕ+k/q−1,

where for the last equality we used the basic identity Γ(z + 1) = zΓ(z).
(c) If F is a polynomial, then the sequence {fr} eventually consists of all zero

terms and so each of the am is equal to zero. �

By induction we can conclude from Proposition 3 that if F (x) is such that Lx(F )
is a polynomial for some linear differential operator Lx with polynomial coefficients,
then Ψ(F (x)) satisfies the linear differential operator Lx+1.

Before stating the main result of this section we require a couple of lemmas.
Firstly, we have the following result.

Lemma 1. Let r ∈ Q, K be a number field and p be a prime of K. If vp(r) ≥ 0
then vp(

(
r
n

)
) ≥ 0 for all n ∈ N0.

Proof. Let p be the prime lying below p. Since vp(r) ≥ 0, we have also vp(r) ≥ 0.
Consequently, r is a p-adic integer. It follows that for any n ∈ N0,

(
r
n

)
is also a

p-adic integer (see, e.g., [7, Lemma 4.3.9]). Since vp(
(
r
n

)
) ≥ 0, we conclude that

vp(
(
r
n

)
) ≥ 0 as well. �

The following lemma is based on [12, Lemma 4] and again follows by an entirely
analogous proof. As before, we include the proof for completeness.
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Lemma 2. Let θ ∈ Q \ Z<0 and K be a number field. Then

(2) (ex − 1)θ =

∞∑
n=0

sn(θ)

(θ + 1) . . . (θ + n)
xθ+n

with

(3) sn(x) =
∑

0≤k≤m≤n

(
x+ n

m+ n

)(
m+ n

k + n

)
(−1)m−kS(n+ k, k) ∈ Q[x],

where S(a, b) denotes the appropriate Stirling number of the second kind. Further,
the only primes of K that can divide the denominators of the sn(θ) are the primes
dividing the denominator of θ.

Proof. We have
(4)

(ex − 1)θ

xθ
=

(
1 +

(
ex − 1

x
− 1

))θ
=

∞∑
m=0

θ(θ − 1) . . . (θ −m+ 1)

m!

(
ex − 1

x
− 1

)m
which lies in Q[[x]]. We can therefore define sn(θ) by (2). We now show that (3)
holds by comparing the coefficient of xθ+n in (2) with the coefficient of xn in (4).
On the one hand, from (2) we see that this coefficient is

(5)
sn(θ)

(θ + 1) . . . (θ + n)
.

On the other hand, looking at (4), noticing that only the terms having m ≤ n
contribute to the coefficient of xn, and letting [xn] be the function that extracts
the coefficient of xn, the coefficient is given by

n∑
m=0

θ(θ − 1) . . . (θ −m+ 1)

m!
[xn]

(
ex − 1

x
− 1

)m
=

n∑
m=0

θ(θ − 1) . . . (θ −m+ 1)

m!

m∑
k=0

(
m

k

)
(−1)m−k[xn]

(
ex − 1

x

)k
=

n∑
0≤k≤m≤n

θ(θ − 1) . . . (θ −m+ 1)

m!

(
m

k

)
(−1)m−kS(n+ k, k)

k!

(n+ k)!
.(6)

Here, we have used [12, p. 6, (2)] that implies that for k ∈ N0,

(ex − 1)k

k!
=

∞∑
`=0

S(`, k)
x`

`!
,

in order to obtain (6). Setting (5) equal to (6) yields (3). For the second part,
suppose that p is a prime of K such that vp(θ) ≥ 0. Then, for all integers, n,

vp(θ + n) ≥ 0. We can therefore apply Lemma 1 to conclude that vp
(
θ+n
m+n

)
≥ 0 for

all integers m and n. Since the rest of the components of (3) are p-adic integers,
we conclude that vp(sn(θ)) ≥ 0. This completes the proof. �

In Lemma 2, it is also possible to put a lower bound on the valuation vp(sn(θ))
of sn(θ) at primes p that divide the denominator of θ, but for simplicity this was
not included.
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Before stating the main result of this section, we observe that the definition of
Ψ(F (x)) yields

(7) Ψ(F (x)) =
xϕ+N/q−1

Γ(ϕ+N/q)

∞∑
n=0

bnx
n/q

where, in particular,

(8) b` =
Γ(ϕ+N/q)

Γ(ϕ+ (N + `)/q)
a`+N (0 ≤ ` < q).

Here we make the assumption

(9) ϕ+
N + `

q
6∈ Z≤0 (0 ≤ ` < q)

in order to have well-defined and nonzero quotients appearing in (8).
We have now arrived at the main result of this section. The special case where

K = Q and q = 1 appears as [12, Corollary 5].

Proposition 4. With the above notation, let K be a number field and 0 ≤ ` <
q. If b` 6= 0 then aN+` 6= 0. In this case, if bqn+`/b` ∈ K for all n then
aqk+N+`/aN+` ∈ K for all k and the only primes of K that can divide the denomi-
nator of aqk+N+`/aN+` are the primes that divide the denominator of ϕ+N/q+`/q
and the primes that divide the denominator of n!bqn+`/b` for some 0 ≤ n ≤ k.

Again, it is possible to give lower bounds on the valuations of the asymptotic
coefficients at the primes of K appearing in Proposition 4, but for simplicity this
was not included.

Proof of Proposition 4. Define B(x) = Ψ(F (x)) and A(x) = B(ex − 1). Then

(10) A(x) =

∞∑
k=0

ak+N

Γ(ϕ+ k/q +N/q)
xϕ+k/q+N/q−1.

By (7) we have

A(x) =

∞∑
n=0

bn
Γ(ϕ+N/q)

(ex − 1)n/q+ϕ+N/q−1.

By (9) we can apply Lemma 2 to obtain the following expression for A(x):

(11)

∞∑
n=0

bn
Γ(ϕ+N/q)

∞∑
m=0

sm(n/q + ϕ+N/q − 1)xn/q+ϕ+N/q−1+m

(n/q + ϕ+N/q) . . . (n/q + ϕ+N/q − 1 +m)
.

Comparing the coefficient of xϕ+k/q+N/q−1 in (10) with that of (11) we find that
the quotient ak+N

Γ(ϕ+k/q+N/q) is given by

∑
n+mq=k

bn
Γ(ϕ+N/q)

sm(n/q + ϕ+N/q − 1)

(n/q + ϕ+N/q) . . . (n/q + ϕ+N/q − 1 +m)
.
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Thus, for k ≥ 0,

ak+N =
∑

n+mq=k

Γ(ϕ+N/q + n/q)

Γ(ϕ+N/q)
bnsm(ϕ+N/q + n/q − 1)

=

bk/qc∑
m=0

Γ(ϕ+N/q + k/q −m)

Γ(ϕ+N/q)
bk−mqsm(ϕ+N/q + k/q −m− 1).

Replacing k with kq + ` we see that the quotient akq+`+N/a`+N is given by

Γ(ϕ+N/q)

Γ(ϕ+N/q + `/q)b`

k∑
m=0

Γ(ϕ+N/q + k + `/q −m)

Γ(ϕ+N/q)

× b(k−m)q+`sm(ϕ+N/q + k + `/q −m− 1)

=

k∑
m=0

Γ(ϕ+N/q + `/q +m)

Γ(ϕ+N/q + `/q)

bmq+`
b`

sk−m(ϕ+N/q + `/q +m− 1)

=

k∑
m=0

(
ϕ+N/q + `/q +m− 1

m

)
m!
bmq+`
b`

sk−m(ϕ+N/q + `/q +m− 1).

The proof now follows from Lemmas 1 and 2. �

In the case of the central weighted Delannoy numbers, we can obtain enough
information regarding the coefficients bn to apply Proposition 4 to obtain meaning-
ful divisibility properties for the original asymptotic coefficients am. Another case
where we can do this is for ur,2r in the case γ = −9αβ. For purposes of clarity, we
now state the special cases of Proposition 4 that apply to these two situations.

Corollary 1. With the above notation, let K be a number field. Suppose further
that {bn}n is defined by

Ψ(F (x)) =
1√
πx

(
1 +

∞∑
n=1

bnx
n

)
,

where each bn ∈ K. Then the coefficients ak for k ≥ 0 all lie in K and the only
primes that can divide their denominators are the primes dividing 2 and the primes
dividing the denominator of some n!bn.

Corollary 2. With the above notation, let K be a number field. Suppose further
that {cn}n and {dn}n are defined by

Ψ(F (x)) =
x−2/3

Γ(1/3)

(
1 +

∞∑
n=1

cnx
n

)
+ bx−1/3

(
1 +

∞∑
n=1

dnx
n

)
,

where each cn, dn ∈ K and b ∈ C is nonzero. Then the coefficients a3k, a3k+1/a1

for k ≥ 0 all lie in K and the only primes that can divide their denominators are
the primes dividing 3 or the denominator of some n!cn or the denominator of some
n!dn.

We note that in Corollary 2, we can say more. The only primes that can divide
the denominators of the coefficients a3n are the primes that divide 3 or the denom-
inator of some n!cn. Similarly, the only primes that can divide the denominators of
the a3n+1/a1 are the primes p such that vp(2) < vp(3) and the primes that divide
the denominator of some n!dn.
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3. The proofs of Propositions 1 and 2

In [9] a multivariate method of Pemantle and Wilson developed in [10] was
combined with a transfer method developed in the book of Flajolet and Sedgewick
[4] in order to obtain full asymptotic expansions for various diagonals of weighted
Delannoy numbers. Combining Propositions 6 and 7 of [9], we obtain the following
result.

Proposition 5. Let d ∈ Z be nonzero. As r → ∞ there exists an asymptotic
expansion

r∑
k=0

(
r

k

)2

dk ∼ (1 +
√
d)2r+1

2 4
√
d
√
πr

(
1 +

∞∑
`=1

µ`
r`

)
if d > 0, and

r∑
k=0

(
r

k

)2

dk ∼ (1 +
√
d)2r+1

2 4
√
d
√
πr

(
1 +

∞∑
`=1

µ`
r`

)
+

(1−
√
d)2r+1

2 4
√
d
√
πr

(
1 +

∞∑
`=1

µ`
r`

)
if d < 0, where the constants µ` ∈ Q(

√
d) and 4

√
· denotes the principal branch of

the fourth root.

Inspection of the proofs of Propositions 6 and 7 of [9] shows that in Proposition
5, one does not require d ∈ Z and so setting d = 1 + γ

αβ , and using the fact that

ur,r = αrβr
r∑

k=0

(
r

k

)2

dk

we obtain, as r →∞,

ur,r ∼ αrβr
(1 +

√
d)2r+1

2 4
√
d
√
πr

(
1 +

∞∑
`=1

µ`
r`

)
if d > 0, and

ur,r ∼ αrβr
(1 +

√
d)2r+1

2 4
√
d
√
πr

(
1 +

∞∑
`=1

µ`
r`

)
+ αrβr

(1−
√
d)2r+1

2 4
√
d
√
πr

(
1 +

∞∑
`=1

µ`
r`

)
if d < 0, where the constants µ` ∈ Q(

√
d). We are left with proving that if d is

algebraic, then the µ` are such that the only primes of Q(
√
d) that can divide their

denominators are the prime divisors of 2 and the prime divisors of
√
d. We will

invoke Corollary 1 to accomplish this.
Define G to be the generating function of {ur,r/αrβr}r and F to be the gener-

ating function of

fr :=
2 4
√
d
√
πur,r

αrβr(
√
d+ 1)2r+1

.

A calculation using the computer algebra system Maple 11 [8] verifies that the
generating function G satisfies the linear ordinary differential equation given by

(12) ((1− d)2x2 − 2(1 + d)x+ 1)G′(x) + ((1− d)2x− (1 + d))G(x) = 0.

Since the generating function for {fr}r is given by

F (x) =
2 4
√
d
√
π√

d+ 1
G

(
x

(
√
d+ 1)2

)
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we can derive a differential equation satisfied by F from the differential equation
(12) satisfied by G. After simplifying, we find that F satisfies the following ordinary
differential equation:

((1−
√
d)2x2 − 2(1 + d)x+ (1 +

√
d)2)F ′(x) + ((1−

√
d)2x− (1 + d))F (x) = 0.

It follows that B defined by B(x) = Ψ(F (x)) satisfies the ordinary differential
equation

((1−
√
d)2(x+ 1)2 − 2(1 + d)(x+ 1) + (1 +

√
d)2)B′(x)

+((1−
√
d)2(x+ 1)− (1 + d))B(x) = 0.

Solving this equation for B we obtain

B(x) =
C√

x(4
√
d− (

√
d− 1)2x)

for some constant C. But from (7) and (8) together with the fact that a0 = 1, we
see that

(13) B(x) =
1√
πx

(
1 +

∞∑
r=1

brx
r

)
.

We conclude that

C =
2 4
√
d√
π
.

Substituting in this value for C yields

(14) B(x) =
2 4
√
d

√
πx
√

4
√
d− (

√
d− 1)2x

=
1√
πx

(
1− (

√
d− 1)2

4
√
d

x

)−1/2

.

Comparing the right-hand sides of (13) and (14) yields

br =

(
−1/2

r

)
(−1)rδr =

(
r − 1/2

r

)
δr where δ =

(
√
d− 1)2

4
√
d

.

We conclude from Corollary 1 that the only primes of Q(
√
d) that can divide the

denominators of the asymptotic coefficients are the prime divisors of 2 and
√
d.

This completes the proof of Proposition 1.
We now turn to the proof of Proposition 2. By [9, Theorem 2] we know that

there exist constants µ`, η` ∈ Q for ` ∈ N such that
r∑

k=0

(−1)k
(
r

k

)(
2r

k

)
8k ∼ (−27)r

22/3Γ(2/3)r1/3

(
1 +

∞∑
`=1

µ`
r`

)

+
(−27)r

24/3Γ(1/3)r2/3

(
1 +

∞∑
`=1

η`
r`

)
(r →∞).

We are therefore left with showing that the only primes that can divide the denom-
inators of the µ` and the η` are 2 and 3. We will use Corollary 2 to accomplish
this.

Suppose that γ = −9αβ and defineG to be the generating function of {ur,2r/αrβ2r}r.
Define F to be the generating function of the sequence {fr}r given by

fr :=
22/3Γ(2/3)ur,2r

(−27)rαrβ2r
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so that, as r →∞,

fr ∼
1

r1/3

(
1 +

∞∑
`=1

µ`
r`

)
+

Γ(2/3)

22/3Γ(1/3)r2/3

(
1 +

∞∑
`=1

η`
r`

)
.

A calculation using Maple shows that the generating function F satisfies the linear
ordinary differential equation

(18x3 − 36x2 + 18x)F ′′(x) + (45x2 − 54x+ 9)F ′(x) + (9x− 5)F (x) = 0.

We conclude that the function B(x) := Ψ(F (x)) satisfies the equation obtained by
replacing x with x+ 1. That is,

18x2(x+ 1)B′′(x) + 9x(5x+ 4)B′(x) + (9x+ 4)B(x) = 0.

Solving this equation with Maple yields

B(x) = C1x
−2/3

2F1

(
−1

6
,

1

3
;

2

3
;−x

)
+ C2x

−1/3
2F1

(
1

6
,

2

3
;

4

3
;−x

)
for some constants C1, C2. However, from (7) and (8) we obtain

Ψ(F (x)) =
x−2/3

Γ(1/3)

(
1 +

∞∑
n=1

cnx
n

)
+

x−1/3

22/3Γ(1/3)

(
1 +

∞∑
n=1

dnx
n

)
for certain cn and dn. It follows that

cn = [xn]2F1

(
−1

6
,

1

3
;

2

3
;−x

)
=

(−1)n(−1/6)n(1/3)n
n!(2/3)n

,

dn = [xn]2F1

(
1

6
,

2

3
;

4

3
;−x

)
=

(−1)n(1/6)n(2/3)n
n!(4/3)n

,

where (t)n = t(t+ 1) . . . (t+ n− 1) denotes the rising Pochhammer symbol. Since
n!cn and n!dn have nonnegative valuations at each prime except 2 and 3, we can
apply Corollary 2 to obtain the divisibility properties stated for the µ` and η`. This
completes the proof of Proposition 2.
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