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The binomial sums of interest -
Motivation

The results

The problem

Conjecture (Chamberland and Dilcher)

The sequence a, = Y _o(—1)*(;) (%) satisfies

do’ ¢ C da’ [
ar ~ (1+1+§+...)+<1+1+§+...)
r r r r

G Vr

asr — o, forsomed, ¢y, ¢y, -+ € C, where oo = %ﬁ.

@ Problem: Study the asymptotics of the binomial sums

; 4 r\ [ar
g ()3

k=0

foree {0,1} anda,de Nasr — .
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The binomial sums of interest -
Motivation

The results

Examples

@ Central binomial coefficients:

2f> ©011) % <f>2
= ur ’ = Z ;
(r = k

@ Central Delannoy numbers:

r 2
D(r.r)=u®"® =% <l:> 2k,

k=0

@ Binomial sum considered by Chamberland and Dilcher:
r
(121 IPNYTIAYL:
o2 = e () ()
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The binomial sums of interest
Motivation

The results

Results: Case |

@ a=1—-(-1)4d,
@ ala—1g(z)=az?+(aa—a—a—1)z+1.
@ A, - the discriminant of g

@ z - A particularly chosen root of g.

@)=

1 _ 1 (1-az
sy P (=)

Theorem (A4 > 0 Case)

There exist constants u, such that
4 r\ [ar 58" &\ i
—1)k df ~ 1+ = r— oo
S () ()7 - 1+ 2 %) =

Rob Noble Asymptotics of a family of binomial sums




The binomial sums of interest
Motivation

The results

Results: Case Il

@ a=1—-(-1)4d,
@ ala—1g9(z) =az?+(aa —a—a—1)z+1.
@ A, - the discriminant of g

@ zy - A particularly chosen root of g.

@)=

1 ﬂ — 1 (1—a20>
(1-20) /Dy’ 2\ 1-2

Theorem (A4 < 0 Case)

There exist constants u, such that, as r — oo,

r r\ [ar 58" = o3 - e
—1)%k dk ~ 1+) = |+ 1+) = ].

kZ::O( ) (k) (k) enrr ; r‘ ) 2nr ;1 rt
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The binomial sums of interest
Motivation

The results

Results: Case Il (1 of 2)

Theorem (A4 = 0 Case)

There exist constants 1.y, ne € Q with denominators divisible only by
the primes 2 and 3 such that

S () () ~ s (1 5 %)+

27) z
W( Z) (r — o).

N\S
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The binomial sums of interest
Motivation
The results

Results: Case Il (2 of 2)

Theorem (A4 = 0 Case)

There exist constants [i,, 7je € Q such that
22/3(—16)" < fle
1+) Tt

4 r\ /3r
kgo(_”k(k) ()2~ s
213(-16)" =y
371325 (1 +;1,e> (r — o).
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The multivariate method of Pemantle and Wilson

The proofs The transfer method of Flajolet and Sedgewick

Generalized Riordan Arrays

{ars}r s is a generalized Riordan array if

F(z,w) = Z arsz'w® = T wils _Sosvzy)(z)

for meromorphic functions ¢ and v that are analytic at z = 0.

Lemma

For trs = Y _o(— 1) (1) () d* = Yoo (1) () (1 — ) we can take

oA2) = 1 ’ V(Z):(1—az>a.

1-2
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The multivariate method of Pemantle and Wilson

The proofs The transfer method of Flajolet and Sedgewick

Main result of Pemantle and Wilson used

2 1 _
Qrs( ) = Z:(z()z) - r(;zs).

@ A pole (z, w) is minimal if for every pole (z/, w’), |2’| < |z| and
wW/| < |w| imply || = |z| and [w/[ = |w].

® F(z,w) =3, soparsZ'W® = WV(Z

@ Ss={zeC|(z,v(2)7") is minimal ,p(z) # 0, sz (2) = rv(2),
and szv"(z) # (r — s)v'(2)}.
Proposition (Pemantle and Wilson)

Under suitable conditions and if Sys is finite and nonempty then there
exists an asymptotic expansion

s o (zs)
w3, el (1, 5 47)

2c5. 278Qrs(Zrs =

asr,s — o (with r/s, s/r remaining bounded), where /- denotes the
principal branch of the square root.
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The multivariate method of Pemantle and Wilson

The proofs The transfer method of Flajolet and Sedgewick

Classifying the set S5

In our case:
@ S ={zeC]|(z,v(z)~") is minimal and
raz? — (1 +a)r+ (1 —a)s)z+r =0}
o v(2) " = (52) =12 for 1(2) = 5.

@ Using the fact that Mébius transformations send circles to circles
we can classify the minimal points.

@ We end up being able to apply the result of Pemantle and Wilson
in all but finitely many cases.
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The multivariate method of Pemantle and Wilson

The proofs The transfer method of Flajolet and Sedgewick

Dealing with the remaining cases

@ Find the singularities of the generating function having least
nonzero modulus.

e The generating function satisfies parametric equations and we can
differentiate implicitly to find the singularities.

@ Expand the generating function about these singularities.

e A linear homogeneous ODE with polynomial coefficients satisfied
by the generating function can be used for this.

e An algebraic equation satisfied by the generating function can also
be used for this.

@ Transfer the asymptotic expansion of the generating function
over to its coefficient sequence by the transfer method of Flajolet
and Sedgewick.
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The multivariate method of Pemantle and Wilson

The proofs The transfer method of Flajolet and Sedgewick

The main result of Flajolet and Sedgewick

Proposition (Flajolet, Sedgewick)

Suppose that ¢4, . ..,y are the dominant singularities of the ordinary
generating function F of the sequence {a,},. Under certain conditions
if F admits an expansion of the form

F(z)~ > gu(G-2""° (z2-¢),

k>k;
for all j then
n 0—1 -K—0—r 0
Gkl G e
ar ~ Z F(G——k,) 1+ Z 2 (f' — OO)

J=1 L=k+1

where pj , € Q(0, G, G k+1/Cik;» - - -5 Cie/Cj ;) for each j and L.
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The multivariate method of Pemantle and Wilson
The transfer method of Flajolet and Sedgewick

The proofs

Divisibility properties of the asymptotic coefficients

@ Stoll and Haible developed a method that can find divisibility
properties of the asymptotic coefficients in certain asymptotic
expansions.

@ Applying the method we obtain the following result.

Proposition

Let d € N. There exists an asymptotic expansion
r 2 ofe)
1 2r+1
(7 gk ~ WA+ DT 14+ ) & (r = ),
= \k 2dV/4\/mr P rt

where the constants 11, € Q(~/d) are such that the only primes of
Q(~/d) that can divide their denominators are the prime divisors of 2
and the prime divisors of \/d.
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Summary

Summary

@ The sequences Y _o(—1)%k(;)(¥)d* fore € {0,1} and a,d e N
admit full asymptotic expansions as r — oo.

@ The main terms can be given explicitly in all cases.

@ On an individual basis, a field containing the asymptotic
coefficients can be found, and for the case ¢ = 0 and a = 1, the
divisibility properties of the asymptotic coefficients can be found.

@ Open Questions.

e Can a number field containing the asymptotic coefficients be found
in general?

e Can the divisibility properties of the asymptotic coefficients be
found in general?
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