# Asymptotics of a family of binomial sums

#### Rob Noble

Department of Mathematics and Statistics Dalhousie University

> CNTA XI July 16, 2010

< ロ > < 同 > < 回 > < 回 > < 回 > <

## Outline



- Motivation
- The results

#### 2 The proofs

- The multivariate method of Pemantle and Wilson
- The transfer method of Flajolet and Sedgewick

## The problem

#### Conjecture (Chamberland and Dilcher)

The sequence 
$$a_r = \sum_{k=0}^{r} (-1)^k {r \choose k} {2r \choose k}$$
 satisfies

$$a_r \sim \frac{d\alpha'}{\sqrt{r}} \left( 1 + \frac{c_1}{r} + \frac{c_2}{r^2} + \ldots \right) + \frac{\overline{d}\overline{\alpha}'}{\sqrt{r}} \left( 1 + \frac{\overline{c_1}}{r} + \frac{\overline{c_2}}{r^2} + \ldots \right)$$

as 
$$r \to \infty$$
, for some  $d, c_1, c_2, \dots \in \mathbb{C}$ , where  $\alpha = \frac{-13+i7\sqrt{7}}{8}$ .

Problem: Study the asymptotics of the binomial sums

$$u_r^{(\varepsilon,a,d)} = \sum_{k=0}^r (-1)^{\varepsilon k} \binom{r}{k} \binom{ar}{k} d^k,$$

for  $\varepsilon \in \{0, 1\}$  and  $a, d \in \mathbb{N}$  as  $r \to \infty$ .

Motivation The results

#### Examples

Central binomial coefficients:

$$\binom{2r}{r} = u_r^{(0,1,1)} = \sum_{k=0}^r \binom{r}{k}^2;$$

• Central Delannoy numbers:

$$D(r,r) = u_r^{(0,1,2)} = \sum_{k=0}^r {\binom{r}{k}}^2 2^k;$$

• Binomial sum considered by Chamberland and Dilcher:

$$u_r^{(1,2,1)} = \sum_{k=0}^r (-1)^k \binom{r}{k} \binom{2r}{k}.$$

(4) (5) (4) (5)

Motivation The results

## Results: Case I

• 
$$\alpha = \mathbf{1} - (-\mathbf{1})^{\varepsilon} \mathbf{d},$$

• 
$$a(\alpha - 1)g(z) = \alpha z^2 + (a\alpha - a - \alpha - 1)z + 1.$$

- $\Delta_g$  the discriminant of g
- *z*<sub>0</sub> A particularly chosen root of *g*.

• 
$$\delta = \frac{1}{(1-z_0)\sqrt[4]{\Delta_g}}, \quad \beta = \frac{1}{z_0} \left(\frac{1-\alpha z_0}{1-z_0}\right)^a$$

#### Theorem ( $\Delta_g > 0$ Case)

There exist constants  $\mu_{\ell}$  such that

$$\sum_{k=0}^{r} (-1)^{\varepsilon k} \binom{r}{k} \binom{ar}{k} d^{k} \sim \frac{\delta \beta^{r}}{\sqrt{2\pi r}} \left( 1 + \sum_{\ell=1}^{\infty} \frac{\mu_{\ell}}{r^{\ell}} \right) \qquad (r \to \infty)$$

Motivation The results

### **Results: Case II**

•  $\alpha = \mathbf{1} - (-\mathbf{1})^{\varepsilon} \mathbf{d}$ ,

• 
$$a(\alpha - 1)g(z) = \alpha z^2 + (a\alpha - a - \alpha - 1)z + 1.$$

- $\Delta_g$  the discriminant of g
- *z*<sub>0</sub> A particularly chosen root of *g*.

• 
$$\delta = \frac{1}{(1-z_0)\sqrt[4]{\Delta_g}}, \quad \beta = \frac{1}{z_0} \left(\frac{1-\alpha z_0}{1-z_0}\right)^a$$

#### Theorem ( $\Delta_g < 0$ Case)

There exist constants  $\mu_{\ell}$  such that, as  $r \to \infty$ ,

$$\sum_{k=0}^{r} (-1)^{\varepsilon k} \binom{r}{k} \binom{ar}{k} d^{k} \sim \frac{\delta \beta^{r}}{\sqrt{2\pi r}} \left( 1 + \sum_{\ell=1}^{\infty} \frac{\mu_{\ell}}{r^{\ell}} \right) + \frac{\overline{\delta \beta}^{r}}{\sqrt{2\pi r}} \left( 1 + \sum_{\ell=1}^{\infty} \frac{\overline{\mu_{\ell}}}{r^{\ell}} \right).$$

• • • • • • • • • • • •

Motivation The results

### Results: Case III (1 of 2)

#### Theorem ( $\Delta_g = 0$ Case)

There exist constants  $\mu_\ell$ ,  $\eta_\ell \in \mathbb{Q}$  with denominators divisible only by the primes 2 and 3 such that

$$\begin{split} \sum_{k=0}^{r} (-1)^{k} \binom{r}{k} \binom{2r}{k} 8^{k} &\sim \frac{(-27)^{r}}{2^{2/3} \Gamma(2/3) r^{1/3}} \left(1 + \sum_{\ell=1}^{\infty} \frac{\mu_{\ell}}{r^{\ell}}\right) + \\ & \frac{(-27)^{r}}{2^{4/3} \Gamma(1/3) r^{2/3}} \left(1 + \sum_{\ell=1}^{\infty} \frac{\eta_{\ell}}{r^{\ell}}\right) \qquad (r \to \infty). \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Motivation The results

### Results: Case III (2 of 2)

#### Theorem ( $\Delta_g = 0$ Case)

There exist constants  $\tilde{\mu}_{\ell}$ ,  $\tilde{\eta}_{\ell} \in \mathbb{Q}$  such that

$$\begin{split} \sum_{k=0}^{r} (-1)^{k} \binom{r}{k} \binom{3r}{k} 3^{k} &\sim \frac{2^{2/3} (-16)^{r}}{3\Gamma(2/3)r^{1/3}} \left(1 + \sum_{\ell=1}^{\infty} \frac{\tilde{\mu}_{\ell}}{r^{\ell}}\right) + \\ & \frac{2^{1/3} (-16)^{r}}{3\Gamma(1/3)r^{2/3}} \left(1 + \sum_{\ell=1}^{\infty} \frac{\tilde{\eta}_{\ell}}{r^{\ell}}\right) \qquad (r \to \infty). \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

The multivariate method of Pemantle and Wilson The transfer method of Flajolet and Sedgewick

### **Generalized Riordan Arrays**

#### Definition

 $\{a_{rs}\}_{r,s}$  is a generalized Riordan array if

$$\tilde{F}(z, w) = \sum_{r, s \ge 0} a_{rs} z^r w^s = \frac{\varphi(z)}{1 - w\nu(z)}$$

for meromorphic functions  $\varphi$  and  $\nu$  that are analytic at z = 0.

#### Lemma

For 
$$\tilde{u}_{rs} = \sum_{k=0}^{r} (-1)^{\varepsilon k} {r \choose k} {as \choose k} d^{k} = \sum_{k=0}^{r} {r \choose k} {as \choose k} (1-\alpha)^{k}$$
 we can take  
 $\varphi(z) = \frac{1}{1-z}, \qquad \nu(z) = \left(\frac{1-\alpha z}{1-z}\right)^{a}.$ 

< □ > < □ > < □ > < □ >

The multivariate method of Pemantle and Wilson The transfer method of Flajolet and Sedgewick

#### Main result of Pemantle and Wilson used

• 
$$\tilde{F}(z, w) = \sum_{r,s \ge 0} a_{rs} z^r w^s = \frac{\varphi(z)}{1 - w\nu(z)}, \ Q_{rs}(z) = \frac{z^2 \nu''(z)}{\nu(z)} - \frac{r(r-s)}{s^2}$$

- A pole (z, w) is minimal if for every pole (z', w'),  $|z'| \le |z|$  and  $|w'| \le |w|$  imply |z'| = |z| and |w'| = |w|.
- $S_{rs} = \{z \in \mathbb{C} \mid (z, \nu(z)^{-1}) \text{ is minimal }, \varphi(z) \neq 0, sz\nu'(z) = r\nu(z),$ and  $sz\nu''(z) \neq (r - s)\nu'(z)\}.$

#### Proposition (Pemantle and Wilson)

Under suitable conditions and if  $S_{rs}$  is finite and nonempty then there exists an asymptotic expansion

$$a_{rs} \sim \sum_{z_{rs} \in S_{rs}} \frac{\varphi(z_{rs})\nu(z_{rs})^s}{z_{rs}^r \sqrt{2\pi s Q_{rs}(z_{rs})}} \left(1 + \sum_{\ell=1}^{\infty} \frac{c_{\ell}^{(z_{rs})}}{s^{\ell}}\right)$$

as  $r, s \to \infty$  (with r/s, s/r remaining bounded), where  $\sqrt{\cdot}$  denotes the principal branch of the square root.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The multivariate method of Pemantle and Wilson The transfer method of Flajolet and Sedgewick

### Classifying the set $S_{rs}$

#### In our case:

•  $S_{rs} = \{z \in \mathbb{C} \mid (z, \nu(z)^{-1}) \text{ is minimal and}$  $r\alpha z^2 - ((1 + \alpha)r + (1 - \alpha)s)z + r = 0\}.$ 

• 
$$\nu(z)^{-1} = \left(\frac{1-z}{1-\alpha z}\right)^a = \gamma(z)^a$$
 for  $\gamma(z) = \frac{1-z}{1-\alpha z}$ .

- Using the fact that Möbius transformations send circles to circles we can classify the minimal points.
- We end up being able to apply the result of Pemantle and Wilson in all but finitely many cases.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### Dealing with the remaining cases

- Find the singularities of the generating function having least nonzero modulus.
  - The generating function satisfies parametric equations and we can differentiate implicitly to find the singularities.
- Expand the generating function about these singularities.
  - A linear homogeneous ODE with polynomial coefficients satisfied by the generating function can be used for this.
  - An algebraic equation satisfied by the generating function can also be used for this.
- Transfer the asymptotic expansion of the generating function over to its coefficient sequence by the transfer method of Flajolet and Sedgewick.

## The main result of Flajolet and Sedgewick

#### Proposition (Flajolet, Sedgewick)

Suppose that  $\zeta_1, \ldots, \zeta_n$  are the dominant singularities of the ordinary generating function F of the sequence  $\{a_r\}_r$ . Under certain conditions if F admits an expansion of the form

$$F(z) \sim \sum_{k \ge k_j} c_{j,k} (\zeta_j - z)^{k-\theta} \qquad (z \to \zeta_j),$$

for all j then

$$a_r \sim \sum_{j=1}^n \frac{c_{j,k_j} r^{\theta-1} \zeta_j^{k_j-\theta-r}}{\Gamma(\theta-k_j)} \left(1 + \sum_{\ell=k_j+1}^\infty \frac{\mu_{j,\ell}}{r^\ell}\right) \qquad (r \to \infty)$$

where  $\mu_{j,\ell} \in \mathbb{Q}(\theta, \zeta_j, c_{j,k_j+1}/c_{j,k_j}, \dots, c_{j,\ell}/c_{j,k_j})$  for each j and  $\ell$ .

## Divisibility properties of the asymptotic coefficients

- Stoll and Haible developed a method that can find divisibility properties of the asymptotic coefficients in certain asymptotic expansions.
- Applying the method we obtain the following result.

#### Proposition

Let  $d \in \mathbb{N}$ . There exists an asymptotic expansion

$$\sum_{k=0}^{r} {\binom{r}{k}}^2 d^k \sim \frac{(\sqrt{d}+1)^{2r+1}}{2d^{1/4}\sqrt{\pi r}} \left(1 + \sum_{\ell=1}^{\infty} \frac{\mu_\ell}{r^\ell}\right) \qquad (r \to \infty),$$

where the constants  $\mu_{\ell} \in \mathbb{Q}(\sqrt{d})$  are such that the only primes of  $\mathbb{Q}(\sqrt{d})$  that can divide their denominators are the prime divisors of 2 and the prime divisors of  $\sqrt{d}$ .

< <p>> < <p>> < <p>> <</p>

# Summary

- The sequences  $\sum_{k=0}^{r} (-1)^{\varepsilon k} {r \choose k} d^{k}$  for  $\varepsilon \in \{0, 1\}$  and  $a, d \in \mathbb{N}$  admit full asymptotic expansions as  $r \to \infty$ .
- The main terms can be given explicitly in all cases.
- On an individual basis, a field containing the asymptotic coefficients can be found, and for the case ε = 0 and a = 1, the divisibility properties of the asymptotic coefficients can be found.
- Open Questions.
  - Can a number field containing the asymptotic coefficients be found in general?
  - Can the divisibility properties of the asymptotic coefficients be found in general?

< D > < P > < E > <</pre>