MAT 1341B, INTRODUCTION TO LINEAR ALGEBRA, FALL 2003

Answers to Second Midterm, November 7, 2003

Prof. P. Selinger

Question 1. Suppose A is a 10×8 -matrix (i.e., it has 10 rows and 8 columns). Further suppose that A has rank 3. Then how many parameters are there in the general solution of the homogeneous systems of equations Ax = 0?

Answer: *There are 8 variables, of which 3 pivot variables, which leaves 5 free variables, so the answer is 5.*

Question 2. If $B = \begin{bmatrix} 1 & 2 & 0 \\ -1 & -1 & -1 \\ 0 & 2 & -1 \end{bmatrix}$, then what is the diagonal of B^{-1} ?

Answer: We invert B:

$$\begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ -1 & -1 & -1 & | & 0 & 1 & 0 \\ 0 & 2 & -1 & | & 0 & 0 & 1 \end{bmatrix} \iff \begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 1 & 0 & 0 \\ 0 & 2 & -1 & | & 0 & 0 & 1 \end{bmatrix}$$
$$\iff \begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & | & -2 & -2 & 1 \end{bmatrix}$$
$$\iff \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & -1 & 1 \\ 0 & 0 & 1 & | & -2 & -2 & 1 \end{bmatrix}$$

So the diagonal of B^{-1} is (3, -1, 1).

Question 3. Recall that two matrices are *row equivalent* if each can be obtained from the other by row operations. Which, if any, of the following three matrices are row equivalent?

$$A = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 3 \\ 2 & 1 & 5 & 4 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & 1 & 2 \\ 1 & 1 & 2 & 2 \end{bmatrix},$$

Answer: We reduce each of the matrices to row-canonical form. A is already in row-canonical form.

$$B = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 3 \\ 2 & 1 & 5 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & 1 & 2 \\ 1 & 1 & 2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & -1 & -1 \end{bmatrix}$$

So A and B are row equivalent to each other, but not to C.

Question 4. Which of the following statements are true in a vector space V of dimension n?

- I. Any n + 1 vectors in V are linearly dependent.
- II. Any n + 1 vectors in V form a spanning set of V.
- III. Any n-1 vectors in V are linearly independent.
- IV. Any n vectors in V form a basis.
- V. Any basis of V consists of n vectors.

Answer: I and V are true. II is false; for instance, take 4 vectors in \mathbb{R}^3 which lie in a plane. III is false; for instance, take 2 vectors in \mathbb{R}^3 which are collinear. IV is false; for instance, take 3 vectors in \mathbb{R}^3 which lie in a plane.

Question 5. For each of the following three linear functions $f, g, h : \mathbb{R}^2 \to \mathbb{R}^2$, give its matrix representation, with respect to the standard basis on \mathbb{R}^2 .

(a) f is a rotation by 90 degrees, as shown in the illustration:

(b) *g* is a reflection about the *y*-axis:

(c) h is the shearing shown in this illustration:

Question 6. Let W be the subspace of \mathbb{R}^5 spanned by the vectors $u_1 = (1, 2, -1, 3, 4)$, $u_2 = (2, 4, -2, 6, 8)$, $u_3 = (1, 3, 2, 2, 6)$, $u_4 = (1, 4, 5, 1, 8)$, $u_5 = (2, 7, 3, 3, 9)$.

(a) Find a *subset* of the vectors u_1, \ldots, u_5 which form a basis of W.

Answer: We use the casting-out algorithm. This means, we write the vectors u_1, \ldots, u_5 as the columns of a matrix and row-reduce.

1	2	1	1	2 -		[1]	2	1	1	2 -]	1	2	1	1	2 -		1	2	1	1	2
2	4	3	4	$\overline{7}$		0	0	1	2	3		0	0	1	2	3		0	0	1	2	3
-1	-2	2	5	3	\sim	0	0	3	6	5	\sim	0	0	0	0	-4	\sim	0	0	0	0	-4
3	6	2	1	3		0	0	-1	-2	-3		0	0	0	0	0		0	0	0	0	0
4	8	6	8	9		0	0	2	4	1		0	0	0	0	-5		0	0	0	0	0

The pivot columns are columns 1, 3, and 5. It follows that vectors u_1 , u_3 , and u_5 form a basis of W.

(b) What is the dimension of W?

Answer: It is 3.

(c) Find a basis of \mathbb{R}^5 which contains the vectors u_1 and u_3 .

Answer: We know that u_1 and u_3 are linearly independent. We need to add 3 linearly independent vectors to obtain a basis. Row-reduce:

 $\begin{bmatrix} 1 & 2 & -1 & 3 & 4 \\ 1 & 3 & 2 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 3 & 4 \\ 0 & 1 & 3 & -1 & 2 \end{bmatrix}$

Since the pivot entries are in columns 1 and 2, we see that the vectors (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), and (0, 0, 0, 0, 1) are linearly independent of u_1 and u_3 , thus the five vectors form a basis.

Question 7. Consider the following basis of \mathbb{R}^3 :

$$S = \{(0, 0, 1), (0, 1, 2), (1, 2, 3)\}.$$

Let $F : \mathbb{R}^3 \to \mathbb{R}^3$ be the function defined by

$$F(x, y, z) = (x - y, x - z, x + y - 2z).$$

(a) Let v = (1, 1, 1). What are the coordinates of v with respect to the basis S?

Answer: The coordinates are $[v]_S = [a, b, c]^T$, where (1, 1, 1) = a(0, 0, 1) + b(0, 1, 2) + c(1, 2, 3). Solving the system of equations, we find a = 0, b = -1, c = 1, so $[v]_S = [0, -1, 1]^T$.

(b) Let w = (x, y, z). What are the coordinates of w with respect to the basis S? Answer: Let

$$P = \left(\begin{array}{rrr} 0 & 0 & 1\\ 0 & 1 & 2\\ 1 & 2 & 3 \end{array}\right).$$

Then P is the change-of-coordinates matrix from S to the standard basis. P^{-1} is the change-ofcoordinates matrix from the standard basis to S. We calculate

$$P^{-1} = \left(\begin{array}{rrrr} 1 & -2 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right).$$

Then $[w]_S = P^{-1} \cdot [x, y, z]^T = (x - 2y + z, -2x + y, x).$

(c) What is the matrix of F with respect to the standard basis $T = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$? Answer: The matrix of F w.r.t. the standard basis is

$$A = \left(\begin{array}{rrrr} 1 & -1 & 0\\ 1 & 0 & -1\\ 1 & 1 & -2 \end{array}\right).$$

(d) What is the matrix of F with respect to the basis S?

Answer: We apply F to the three basis vectors: F(0, 0, 1) = (0, -1, -2), F(0, 1, 2) = (-1, -2, -3), F(1, 2, 3) = (-1, -2, -3). We express the results in coordinates relative to S: $[(0, -1, -2)]_S = [0, -1, 0]^T$, $[(-1, -2, -3)]_S = [0, 0, -1]^T$. Therefore the desired matrix is

$$B = \left(\begin{array}{rrrr} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & -1 \end{array}\right)$$

One may also calculate it as $B = P^{-1}AP$.

Question 8. (a) Let $F: V \to W$ be a function between two vector spaces. Write down the axioms that F must satisfy in order to be linear.

Answer: 1. for all $v, u \in V$, F(v + u) = F(v) + F(u). 2. for all $v \in V$, $k \in K$, F(kv) = kF(v).

(b) Prove that the function $F : \mathbb{R}^3 \to \mathbb{R}^2$ which is given by F(x, y, z) = (x, y + 2z) is linear.

Answer: 1. Let v = (x, y, z), u = (x', y', z'). Then F(v + u) = F(x + x', y + y', z + z') = (x + x', y + y' + 2(z + z')) = (x, y + 2z) + (x', y' + 2z') = F(x, y, z) + F(x', y', z') = F(v) + F(u). 2. Let v = (x, y, z) and k a scalar, Then F(kv) = F(kx, ky, kz) = (kx, ky + 2kz) = k(x, y + 2z) = kF(x, y, z) = kF(v).

(b) Prove that the function $F : \mathbb{R}^3 \to \mathbb{R}^2$ which is given by F(x, y, z) = (x, y + 2) is *not* linear, by giving a *concrete* counterexamples to one of the axioms from (a).

Answer: For example, it fails to satisfy axiom 1 when v = (0,0,0) and u = (0,0,0). In this case we have F(v + u) = F(0,0,0) = (0,2), whereas F(v) + F(u) = F(0,0,0) + F(0,0,0) = (0,2) + (0,2) = (0,4).