4. Let $\mathbf{F}([-1,1]) = \{f \mid f : [-1,1] \to \mathbf{R}\}$ be the vector space of real-valued functions defined on [-1,1]. Recall that the zero of $\mathbf{F}[-1,1]$ is the function that has the value 0 for all $x \in [-1,1]$.

Define three functions in $\mathbf{F}([-1,1])$ by f(x) = 1+x, $g(x) = x+x^2$ et $h(x) = x+x^2+x^3$ and let $W = \operatorname{span}\{f, g, h\}$.

- a) Show that f, g and h are linearly independent.
- b) Find a basis for W and the dimension of W.
- c) If $j(x) = 1 x^2 + x^3$ show that $j \in W$.
- d) What is dim span{f, g, h, j}?

- 5. Suppose $v_1 = (1, 2, 1)$ and $v_2 = (-1, 1, -1)$ and let $W = \operatorname{span}\{v_1, v_2\}$.
- a) Show that $\{v_1, v_2\}$ is an orthogonal set. Is $\{v_1, v_2\}$ linearly independent? (Give reasons)
- b) Give a complete geometric description of W.
- c) Find an orthonormal basis B of W, and hence find dim W.
- d) Extend the basis B to an orthogonal basis of \mathbb{R}^3 .

6. Suppose $\{u, v\}$ is a linearly independent set in vector space V, and suppose $w \in V$ is such that $\{u, v, w\}$ is linearly **de**pendent.

a) State carefully what " $\{u, v\}$ is linearly independent" means. (i.e. give the definition.)

In the next two parts, either show that the statement is always true, or give a counterexample (in \mathbb{R}^2 or \mathbb{R}^3) to show it isn't always true.

- b) $w \in \operatorname{span}\{u, v\}.$
- c) $u \in \operatorname{span}\{v, w\}.$