7. Consider the linear system

x	+	2y	+	z	=	0
x	+	3y	+	2kz	=	0
2x	+	4y	+	kz	=	0

- a) If A is the coefficient matrix of the system above, find rank A for all values of k.
- b) Find all k so that this system has
 - i) a unique solution,
 - ii) infinitely many solutions, and
 - iii) no solutions.
- c) In case (ii) above, give a geometric description of the set of solutions in each instance.

8. a) A pet fanatic, Pat, wishes to keep combination of dogs, cats and weasels. They are to be fed 3 food types, A, B and C, and their weekly requirements (in kgs per animal per week) are given in the table below:

	cats	dogs	weasels
А	2	0	2
В	2	1	1
\mathbf{C}	3	1	2

Pat can only afford 12 kgs of A, 10 kgs of B and 16 kgs of C each week. Assuming that all the available food is eaten by Pat's furry friends, write down a linear system, <u>together with all constraints</u>, describing the possible combinations of cats, dogs and weasels that this lunatic can keep. Don't forget to define your variables and **DO NOT SOLVE THIS SYSTEM.**

b) Find all solutions of the following constrained linear system:

2x	+	y	+	z	=	14
3x	+	3y			=	15
5x	+	4y	+	z	=	29

where x, y and z are integers, and $x \ge 3$, $y \ge 0$ and $x \ge 2$.

- **9.** Let $W = \{(a, a b, a + b) \mid a, b \in \mathbf{R}\}.$
 - a) By any method, show that W is a subspace of \mathbb{R}^3 .
 - b) Find a basis of W and give the dimension of W. (You must explain why your choice is a basis.)
 - c) Give a geometric description of W.
 - d) Give an equation for W.

10. Consider the vector space

 $\mathbf{F}[-1,1] = \{ f \mid f \text{ is a real-valued function with domain } [-1,1] \},\$

together with the usual operations on functions. Recall that the zero of $\mathbf{F}[-1, 1]$ is the function that has the value 0 for every $x \in [-1, 1]$.

- a) Prove that $\{1, x, x^2\}$ is linearly independent in $\mathbf{F}[-1, 1]$. (Hint: Consider x = -1, 0, and 1.)
- b) If $f(x) = (2x+1)^2$, is $f \in \text{span}\{1, x, x^2\}$?
- c) Show that if $g(x) = \frac{1}{x+2}$, then $g \notin \text{span}\{1, x\}$
- d) What is the dimension of the subspace $U = \text{span}\{1, x, \frac{1}{x+2}\}$?

11. a) Let A be a real $n \times n$ matrix. Give 3 different statements which are equivalent to:

$\det A \neq 0.$

- b) Say whether the following statements are TRUE or FALSE. No justification is necessary!
 - i) If is A a real $n \times n$ matrix, then A is invertible iff 0 is not an eigenvalue of A.
 - ii) A 3×4 matrix can have linearly independent columns.
 - iii) The solution space of a homogeneous system of 2 equations in 6 unknowns can have dimension exactly 3.

- **12.** Let $A = \begin{bmatrix} 5 & -1 & 2 \\ -1 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix}$. The eigenvalues of A are 0 and 6.
- a) Find a basis of $E_0 = \{x \in \mathbf{R}^3 \mid Ax = 0\}.$
- b) Find a basis of $E_6 = \{x \in \mathbf{R}^3 \mid (A 6I)x = 0\}.$
- c) Show that the set consisting of all vectors in the bases for E_0 and E_6 is a basis for \mathbf{R}^3 .
- d) If possible, find an invertible matrix P such that $P^{-1}AP = D$ is diagonal and give this diagonal matrix D.