UNIVERSITÉ D'OTTAWA • UNIVERSITY OF OTTAWA

Sciences • Science

Mathématiques et statistique Mathematics and Statistics

MAT 1341B Final Exam

April 26, 2002

Duration: 3 hours.

Instructor: Barry Jessup.

Family Name:_____

First Name:_____

Student number:_____

PLEASE READ THESE INSTRUCTIONS CAREFULLY.

- 1. You have 3 hours to complete this exam.
- 2. This is a closed book exam, and no notes of any kind are allowed. The use of calculators, cell phones, pagers or any text storage or communication device is not permitted.
- 3. Read each question carefully -you will save yourself time and unnecessary grief later on.
- 4. Questions 1 to 9 are multiple choice. These questions are worth 2 points each and no part marks will be given. Please record your answers in the space provided above.
- 5. Questions 10 14 require a complete solution, and are worth 6 points each, so spend your time accordingly.
- 6. The correct answer requires justification written legibly and logically: you must convince me that you know why your solution is correct.
- 7. You must answer these questions in the space provided. Use the backs of pages if necessary.
- 8. Where it is possible to check your work, do so.
- 9. Bonne chance! Good luck!

1	
2	
3	
4	
5	
6	
7	
8	
9	
sub-total	
10	
11	
12	
13	
14	
Total	

The eigenvalues of the matrix $\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$ 17 1.

$$\begin{bmatrix} 1 & -1 \\ 0 & -1 \\ 2 & -3 \end{bmatrix}$$
 are:

A. 2, 3, 4 B. -3, 3, 4 C. 0, 1, 3 D. -3, 0, 4 E. -1, -2, 1 F. 0, 0, 2

- Find the main diagonal of the inverse of $\begin{bmatrix} 1 & -2 & -3 \\ -2 & 2 & 4 \\ -3 & 0 & 2 \end{bmatrix}.$ 2.
 - A. (2, -7/2, -1)B. (5/2, 7/2, 3/2) C. (2, 1, -1)D. (-1, -7/2, 3)E. (7/2, 2, -1)F. (2, 1, -7/2)

$$A^{t} - \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{t} \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}$$

A. $\begin{bmatrix} 0 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ B. $\begin{bmatrix} 0 & 2 & 3 \\ 4 & 4 & 6 \end{bmatrix}$ C. $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ D. $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 4 & 6 \end{bmatrix}$ E. $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ F. $\begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix}$

4. For a non-homogeneous system of 12 equations in 15 unknowns, answer the following three questions:

- Can the system be inconsistent?
- Can the system have infinitely many solutions?
- Can the system have a unique solution?
- A. No, Yes, No.
- B. Yes, Yes, Yes.
- C. Yes, Yes, No.
- D. No, No, No.
- E. Yes, No, Yes.
- F. No, No, Yes.

5. Let $U = \text{span}\{(1, -2, 3, 4), (-3, 6, -5, -16), (-1, 2, -5, -2)\}$ be a subspace of \mathbb{R}^4 . Then dim U^{\perp} is

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4
- F. 5

6. The dimension of
$$S = \{A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} \mid A = A^t\}$$
 is:

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4
- F. 5

- 7. Which of the following statements are true?
 - (1) Each spanning set for \mathbf{R}^n has exactly *n* vectors.
 - (2) If $\{u, v, w\}$ is linearly independent, then $\{u, v\}$ is also linearly independent.
 - (3) If A is an $n \times n$ matrix, then det $A = (-1)^n \det(A^t)$.
 - (4) If A is an $n \times n$ matrix, then dim col A = n.
 - (5) If A is an $n \times n$ matrix, the dim ker $A = n \operatorname{rank} A$.
 - (6) The set of $n \times n$ diagonal matrices is a subspace of the vector space of all $n \times n$ matrices.
 - A. All six are true.
 - B. (2), (5) and (6).
 - C. (1), (2) and (4).
 - D. (3), (2) and (6).
 - E. (4), (5) and (6).
 - F. (2), (3) and (5).

- 8. Let A and B be two matrices such that det A = -2 and det $(B^t) = 3$. Find det(AB).
 - A. 6
 - B. 1
 - C. 5
 - D. -5
 - E. -6
 - F. -3/2

9. What is the dimension of the subspace of \mathbf{R}^3 spanned by (1, 1, 1), (-1, 1, -1), (1, 1, 3) and (0, 2, 1)?

A. 0

- B. 1
- C. 2
- D. 3
- E. 4
- F. These vectors do not span a subspace.

10. Consider the linear system

a) If $[A \mid b]$ is the augmented matrix of the system above, find rank A and rank $[A \mid b]$ for all values of p and q.

- **10**b) Find all p and q so that this system has
 - i) a unique solution,
 - ii) infinitely many solutions, and
 - iii) no solutions.

10c) In case (ii) above, give a complete geometric description of the set of solutions.

11. Let
$$A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$
.

a) Find $det(A - 2I_3)$ and hence conclude that 2 is an eigenvalue of A.

b) Find a basis of $E_2 = \{x \in \mathbf{R}^3 \mid Ax = 2x\}.$

11 c) Check that (1,1,1) is an eigenvector of $A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$.

11 d) If possible, find an invertible matrix P such that $P^{-1}AP = D$ is diagonal and give this diagonal matrix D.

- 12. Let $W = \{(x, y, z) \in \mathbf{R}^3 \mid x y 2z = 0\}.$
 - a) Find a basis of W and give the dimension of W.

b) Find an orthogonal basis of W.

12c) Find the best approximation to (1, 0, 0) by vectors in W.

13. a) Let A be a real $n \times n$ matrix. Give 4 additional different statements which are equivalent to:

Ax = b is consistent for all $b \in \mathbf{R}^n$.

(I)

(II)

(III)

(IV)

- **13**b) State (in the box) whether the following are true or false. If true, explain why, if false, give a numerical example to illustrate.
 - i) If a 5 by 3 matrix A has rank 3, the system Ax = 0 has a unique solution.

ii) If a 5 by 5 matrix A satisfies $A^3 = 0$, but $A \neq 0$, then A is invertible.

- **14.** Let u = (1, 0, 0, 1), v = (0, 1, 1, 0) and w = (1, 0, 0, -1) be vectors in \mathbb{R}^4 .
 - a) Carefully show, by any method, that $\{u, v, w\}$ is linearly independent.

b) Find a vector $z \in \mathbf{R}^4$ so that $\{u, v, w, z\}$ spans \mathbf{R}^4 , and support your answer.

14c) If $(x_1, x_2, x_3, x_4) \in \text{span}\{u, v, w\}$, find formulae in terms of x_1, x_2, x_3 and x_4 for the scalars c_1, c_2 and c_3 such that $(x_1, x_2, x_3, x_4) = c_1u + c_2v + c_3w$.

(blank)