MAT 1341, INTRODUCTION TO LINEAR ALGEBRA, WINTER 2003

Answers to Minitest 2 (Version 1)

Question 1 (2 points). Determine for which value(s) of t the matrix

$$\left(\begin{array}{rrrr}
1 & 2 & -1 \\
2 & 0 & t \\
0 & 1 & 1
\end{array}\right)$$

is invertible.

- $\Box \quad t \neq 3.$ $\boxtimes \quad t \neq -6.$ $\Box \quad t = -1.$
- $\Box \quad t = -6.$
- $\Box \quad t=3.$
- $\Box \quad t \neq -1.$

Question 2 (2 points). Find the coordinates of the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ relative to the basis

$$\mathcal{B} = \left\{ \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}$$

of $M_{2,2}$.

- $\Box \quad [A]_{\mathcal{B}} = [1, -1, 0, 2].$
- \square [A]_B = [1, 1, 0, 1].
- $\Box \quad [A]_{\mathcal{B}} = [-1, 1, 1, 1].$
- $\Box \quad [A]_{\mathcal{B}} = [2, 0, 0, 1].$
- $\Box \quad [A]_{\mathcal{B}} = [1, -1, 2, 1].$
- $\Box \quad [A]_{\mathcal{B}} = [1, 1, -1, 0].$

Question 3 (1/2 point each). Let V be an n-dimensional vector space. True or false:

(a)	If the vectors v_1, \ldots, v_m span V, then $m < n$.	□ true	⊠ false
(b)	Any n vectors which span V are linearly independent.	🖾 true	□ false
(c)	Every set of n vectors in V is linearly independent.	□ true	🖾 false

(d) V has a basis consisting of n elements.	🖾 true	\Box false
(e) V is spanned by $n-1$ or fewer vectors.	□ true	⊠ false
(f) Any $n + 1$ or more vectors in V are linearly dependent.	🖾 true	☐ false

Question 4 (1/2 point each). For each of the following sets of vectors, determine whether they are linearly independent or dependent:

(a)	(0,0,0), (1,0,0)	\Box independent	🖾 dependent
(b)	(1,0,0), $(1,1,0)$, $(1,1,1)$	independent	□ dependent
(c)	(4, 2, 2), (5, 1, 0), (3, 4, 2), (-1, 0, 9)	□ independent	☑ dependent
(d)	(1, 5, 5), (3, 3, 2)	independent	□ dependent
(e)	(1, 3, 4), (1, 0, 1), (0, 1, 2)	independent	□ dependent
(f)	(1, 3, 5), (1, 2, 3), (1, 1, 1)	□ independent	🛛 dependent

Question 5 (3 points). Find a basis and the dimension of the subspace W of \mathbb{R}^4 where: (a) $W = \{(a, b, c, d) \mid a + b + c + d = 0\}.$

Answer: We can let b, c, d be arbitrary, then a = -b - c - d. So the general solution is:

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} -b-c-d \\ b \\ c \\ d \end{pmatrix} = b \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + c \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + d \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

The dimension is 3, a basis is

$$\left\{ \left(\begin{array}{c} -1\\1\\0\\0 \end{array} \right), \left(\begin{array}{c} -1\\0\\1\\0 \end{array} \right), \left(\begin{array}{c} -1\\0\\0\\1 \end{array} \right) \right\}$$

(b) $W = \{(a, b, c, d) \mid a = 2b \text{ and } c = 2d\}.$

Answer: We can let b, d be arbitrary, then a = 2b, c = 2d, so the general solution is:

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 2b \\ b \\ 2d \\ d \end{pmatrix} = b \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + d \begin{pmatrix} 0 \\ 0 \\ 2 \\ 1 \end{pmatrix}.$$

The dimension is 2, a basis is

$$\left\{ \left(\begin{array}{c} 2\\1\\0\\0\end{array}\right), \left(\begin{array}{c} 0\\0\\2\\1\end{array}\right) \right\}$$

Question 6 (3 points). Find a basis and the dimension of span (u_1, u_2, u_3, u_4) in $\mathbf{P}_3(t)$, where

$$u_1 = 2t^3 + 3t^2 + 4t + 5,$$

$$u_2 = -1t^3 + 1t^2 + 3t + 0,$$

$$u_3 = 1t^3 + 2t^2 + 3t + 3,$$

$$u_4 = 2t^3 + 1t^2 + 0t + 4$$

Answer: We use row reductions.

$$\begin{bmatrix} 2 & 3 & 4 & 5 \\ -1 & 1 & 3 & 0 \\ 1 & 2 & 3 & 3 \\ 2 & 1 & 0 & 4 \end{bmatrix} \sim \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & 5 & 10 & 5 \\ 0 & -1 & -2 & -1 \\ 0 & 2 & 4 & 1 \end{bmatrix} \sim \begin{bmatrix} 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus, the dimension is 3, and a basis is e.g. $\{2t^3 + 3t^2 + 4t + 5, t^2 + 2t + 1, 1\}$.

Question 7 (4 points). Consider the following matrix:

$$B = \begin{pmatrix} 1 & 5 & 3 & 2 & -1 \\ 4 & -2 & 0 & 1 & 2 \\ 3 & -1 & 1 & 2 & 1 \\ 2 & 6 & 4 & 3 & -1 \\ 4 & 0 & 2 & 3 & 1 \end{pmatrix}$$

(a) What is the rank of B?

Answer:

								3								
4	-2	0	1	2		0	-22	-12	-7	6		0	-4	-2	-1	1
3	-1	1	2	1	\sim	0	-16	-8	-4	4	\sim	0	0	2	3	-1
2	6	4	3	-1		0	-4	-2	-1	1		0	0	0	0	0
4	0	2	3	1		0	-20	-10	-5	5		0	0	0	0	0

Rank = 3.

(b) Find a subset of the rows of B which forms a basis of the row space of B.

Answer: Cast-out algorithm, using the matrix B^T :

Γ	1	4	3	2	4		[1]	4	3	2	4		[1]	4	3	2	4	1
	5	-2	-1	6	0		0	-22	-16	-4	$-20 \\ -10$		0	1	0	0	0	
	3	0	1	4	2	\sim	0	-12	-8	-2	-10	\sim	0	0	4	1	5	
	2	1	2	3	3		0	-7	-4	-1	-5		0	0	0	0	0	
L	-1	2	1	-1	1		0	6	4	1	$^{-5}_{5}$		0	0	0	0	0	

We find that the first three columns are linearly independent. Thus the first three rows of the matrix B are linearly independent; they form a basis of the row space.

(c) Complete the set $u_1 = (1, 3, 1, 5, 3)$, $u_2 = (1, 2, 1, 3, 2)$, $u_3 = (1, 0, 1, 0, 0)$ to a basis of \mathbb{R}^5 .

Answer: We use row operations to compute a basis of span $\{u_1, u_2, u_3\}$:

ſ	1	3	1	5	3		1	3	1	5	3	
	1	2	1	3	2	\sim	0	1	0	2	1	
	1	0	1	0	0	~	0	0	0	1	0	

We can complete this to a basis of \mathbb{R}^5 by adding two linearly independent vectors, e.g. $u_4 = (0, 0, 1, 0, 0)$ and $u_5 = (0, 0, 0, 0, 1)$.

Question 8 (4 points). Recall that a function $F : V \to U$ is linear if (1) for all $v, w \in V$, F(v+w) = F(v) + F(w), and (2) for all $v \in V$, $k \in K$, F(kv) = kF(v).

(a) Show that the following function is linear: $F : \mathbb{R}^2 \to \mathbb{R}^2$, where F(x, y) = (x + y, x).

Answer:

(1) Let v = (x, y) and w = (x', y') be two vectors. Then

$$\begin{array}{rcl} F(v+w) &=& F((x,y)+(x',y'))=F(x+x',y+y')=(x+x'+y+y',x+x')\\ F(v)+F(w) &=& F(x,y)+F(x',y')=(x+y,x)+(x'+y',x')=(x+y+x'+y',x+x') \end{array}$$

Since the left-hand-side and right-hand-side are equal, we have F(v + w) = F(v) + F(w).

(2) Let v = (x, y) and k a scalar. Then

$$F(kv) = F(kx, ky) = (kx + ky, kx)$$

 $kF(v) = k(x + y, x) = (k(x + y), yx).$

Since the left-hand-side and right-hand-side are equal, we have F(kv) = kF(v).

(b) Show that the following function is not linear: $F : \mathbb{R}^2 \to \mathbb{R}^2$, where F(x, y) = (xy, x). Do this by giving a *concrete* example where one of the above laws ((1) or (2)) is violated.

Answer: We give a counterexample to property (1). Namely, let v = (0, 1) and w = (1, 0). Then

$$F(v+w) = F(1,1) = (1,1),$$

$$F(v) + F(w) = F(0,1) + F(1,0) = (0,0) + (0,1) = (0,1).$$

Since the two sides are not equal, the equation F(v + w) = F(v) + F(w) does not hold.