
MAT 3321, COMPLEX ANALYSIS AND INTEGRAL TRANSFORMS,
WINTER 2005

Answers to Homework 6
13.3 #4,8,18; 13.4 #4,16

Problem 13.3 #4 We will integratef(z) =
z2/(z4 − 1) counterclockwise around the path
C given by x2 + 16y2 = 4. Note that this
is not a circle, but an ellipse withx-intercepts
±2 and y-intercepts±1/2, as shown on the
right. Note thatz4 − 1 = (z2 − 1)(z2 + 1) =
(z + 1)(z − 1)(z + i)(z − i), thus the func-
tion f(z) has 4 singluarities at1,−1, i, and−i.
Of these, only1 and−1 lie insideC. By inde-
pendence of path, the desired integral is equal
to the sum of the integrals aroundC1 andC2

as shown in the figure. By Cauchy’s integral
formula, we have
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whereg(z) = z2/(z − 1)(z2 + 1). Similarly,
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whereh(z) = z2/(z + 1)(z2 + 1). Finally,
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Problem 13.3 #8 We are integratingf(z) =
z3 sin z

3z − 1
counterclockwise around

the unit circle. The functionf(z) has a unique singularity atz = 1/3. We use
Cauchy’s integral formula:
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whereg(z) = 1
3z3 sin z.
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Problem 13.3 #18 We are integratingf(z) =
Ln(z + 1)

z2 + 1
along the pathC which consists of

|z − i| = 1.4 (counterclockwise) and|z| = 0.2
(clockwise), as shown on the right. The func-
tion f(z) has three singularities atz = ±i and
z = −1; the latter singluarity is becauseLn(0)
is undefined. Further, the function has a discon-
tinuity along the negativex-axis starting from
x = −1; this is due to the discontinuity of
Ln(z). Fortunately, our paths of integration do
not cross this discontinuity, so we can safely
ignore it.
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By Cauchy’s integral formula, we have
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whereg(z) = Ln(z + 1)/(z + i). Therefore,g(i) = Ln(1 + i)/2i. Since1 + i =√
2eπ/4 in polar coordinates, we have
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Problem 13.4 #4 Using Cauchy’s integral formula for derivatives of an analytic
function, we have
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z6. We calculate this function’s 5th derivative:
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Therefore,
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=
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Problem 13.4 #16 We are integratingf(z) =

ez2

z(z − 2i)2
along the pathC consisting of|z−

i| = 3 (counterclockwise) and|z| = 1 (clock-
wise), as shown in the figure. Note that the
function f(z) has two singularities, atz = 0
and atz = 2i. Of these,z = 2i has winding
number1 (it lies only insideC1), andz = 0 has
winding number0 (it lies inside both paths, but
since the paths are traversed in opposite direc-
tions, their effects cancel each other out). The
desired integral is therefore equal to integrating
around a small circle centered atz = 2i, coun-
terclockwise.
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9

4
e−4. therefore

∫
C

ez2

z(z − 2i)2
dz = 2πi

9

4
e−4 ≈ 0.2589i

3


