
MAT 3321, COMPLEX ANALYSIS AND INTEGRAL TRANSFORMS,
WINTER 2005

Answers to Homework 8
14.3 #6,10; 14.4 #2,4,10

Problem 14.3 #6 Consider the series
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(a) We find the radius of convergence by the Cauchy-Hadamard formula:
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(b) We can also find the radius of convergence by reducing the problem to a sim-
pler series. Note that

(
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Also note that the kth derivative of zn is

dk

dzk
zn = n(n − 1) · · · (n − k + 1)zn−k.

We can therefore start from the geometric series:
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whose radius of convergence is 1. We take the kth derivative,
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whose radius of convergence is also 1 (by Theorem 3). We multiply by zk and
divide by k! (this does not change the radius of convergence):
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The radius of convergence is still |z| < 1. Finally, we do a substitution: replace z
by z/π. The series is
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which is the same as the desired series. The radius of convergence, after the last
substitution, is |z/π| < 1 or |z| < π.

Problem 14.3 #10 Consider the series
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(a) We find the radius of convergence by the Cauchy-Hadamard formula. Note
that, since all even coefficients are zero, we cannot calculate an/an+1 directly.
As shown in class, we should first do a substitution w = z2. It also helps to
divide the entire series by z (which does not change the radius of convergence).
Therefore we have
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.

We now use the Cauchy-Hadamard formula to find the radius of convergence in
terms of w. Namely,
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The series therefore converges for all w, and hence the original series converges
for all z.
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(b) We can also find the radius of convergence by reducing the problem to a sim-
pler series. Taking the first derivative of S, we find that

dS
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We can substitute w = −z2 so that

∞
∑

n=0

wn

n!
.

This is the familiar series for the exponential function. Its radius of convergence
is known to be ∞, hence it converges for all w, and therefore for all z. So the
radius of convergence of the original series is ∞.

Problem 14.4 #2 Starting from the familiar geometric series

1

1 − w
= 1 + w + w2 + . . . ,

we can perform a simple substitution w = z4 to obtain the Maclaurin series for:

1

1 − z4
= 1 + z4 + z8 + . . . .

Since the open disc of convergence of the original series is |w| < 1, we find after
substitution that |z4| < 1, which simplifies to |z| < 1. Therefore, the radius of
convergence (in terms of z) is 1.

Problem 14.4 #4 We start from the familiar series for ew:
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Substituting w = −z2/2, we get:
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The radius of convergence, in terms of w, is ∞, thus the series converges when
|w| < ∞, or | − z2/2| < ∞. In other words, the series converges for all z, hence
the radius of convergence (in terms of z) is also ∞.
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Problem 14.4 #10 To find the Maclaurin series of

Si(z) =

∫ z

0

sin t

t
dt,

we start from the series for sin z:
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The radius of convergence is ∞. We divide by z:
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Finally, we integrate. The antiderivative of (sin z)/z is:
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Finally, we determine the constant C: because Si(0) = 0, we have C = 0. There-
fore
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