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Answers to Problem Set 2 (due Sept. 30)

Problem 1.2 #17 Proof 1: Suppose gcd(m, n) = 1 and gcd(k, n) = 1. Let d be
a common divisor of mk and n. Suppose that d is divisible by some prime, say
p|d. Then p|mk, hence p|m or p|k by Euclid’s Lemma (Thm 6(1), p.41). If p|m,
then p is a common divisor of m and n, contradicting gcd(m, n) = 1. Similarly, if
p|k, then p is a common divisor of k and n, contradicting gcd(k, n) = 1. In either
case, we have a contradiction, thus d has no prime factor. It follows that d = 1 or
d = −1. In either case, gcd(mk, n) = 1.

Proof 2: Suppose gcd(m, n) = 1 and gcd(k, n) = 1. Let d = gcd(mk, n), and
let d′ = gcd(d, k). Then d′ divides k and n, hence d′ = 1 because gcd(k, n) = 1.
Thus d and k are relatively prime. Since d|mk, it follows by Theorem 5(2), p.41,
that d|m. But also d|n, hence d = 1 since gcd(m, n) = 1.

Proof 3: Suppose gcd(m, n) = 1 and gcd(k, n) = 1. Then, by Euclid’s algo-
rithm, there exist x, y, z, w such that mx + ny = 1 and kz + nw = 1. Then
gcd(mk, n)|(mkxz +nkyz +nw) = (mx+ny)kz +nw = kz +nw = 1, hence
gcd(mk, n) = 1.

Problem 1.2 #18 Suppose gcd(m, n) = 1 and d = gcd(m + n, m − n). Then
d|m+n and d|m−n, so there exist a, b ∈ Z such that ad = m+n and bd = m−n.
Also, since gcd(m, n) = 1, there exist x, y ∈ Z such that xm + yn = 1. We have

x(ad + bd) + y(ad − bd) = 2xm + 2yn = 2.

But d divides the left-hand-side, thus d|2. As 2 is prime, it follows that d = 1 or
d = 2.

Problem 1.2 #19 Let d = gcd(km, kn), and let e = gcd(m, n). We want to
show that d = ke. First, note that e|m and e|n, hence ke|km and ke|kn, hence
ke is a common divisor of km and kn, hence ke|d (by definition of d. For the
converse, use the fact (from Euclid’s algorith) that there exist a, b ∈ Z such that
e = am + bn. Then ke = kam + kbn. But d|km and d|kn, hence d|kam + kbn,
hence d|ke. Because ke|d and d|ke, it follows that ke = ±d.

Finally, by definition of gcd, we have assumed that e, d > 0. If we also assume
k > 0, then it follows that ke = d. Otherwise, if k < 0, then ke = −d, and the
statement is false. Thus, problem 1.2 #19 is incorrect; the additional assumption
k > 0 should have been made.
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Problem 1.2 #24 Let a = 2n+1 and b = 2n+3 be two consecutive odd integers.
Then gcd(a, b) = gcd(a, b − a) = gcd(a, 2) = gcd(a − 2n, 2) = gcd(1, 2) = 1
(by repeated application of Example 3, p.38).

Problem 1.2 #25 Suppose a = 2n + 1, b = 2n + 3, and c = 2n + 5 are three
consecutive odd numbers, where n > 0. We claim that if a, b, c are all prime, then
n = 1 and (a, b, c) = (3, 5, 7). We first prove that one of a, b, c must be divisible
by 3. To prove this, consider n ∈ Z3. There are three cases to consider: Case 1:
n = 0, in which case b = 2n + 3 = 0 and 3|2n + 3. Case 2: n = 1, in which case
a = 2n + 1 = 0 and 3|2n + 1. Case 3: n = 2, in which case c = 2n + 5 = 0 and
3|2n + 5. In either case, 3 divides one of the numbers a, b, c.

Now if a, b, c are all prime, and one of them is divisible by 3, then this number
must actually be equal to 3. This leaves two possibilities: (a, b, c) = (3, 5, 7),
(a, b, c) = (1, 3, 5). The latter triple contains the number 1, which is not prime;
therefore (3, 5, 7) is the only triple of consecutive prime numbers.

Problem 1.3 #19 We want to show that there exists no integer k such that 7|(k 2 +
1). Equivalently, there exists no element k ∈ Z7 such that k2 + 1 = 0. Equiva-
lently, there exists no element k ∈ Z7 such that k2 = −1 = 6. There are seven
cases to check:
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We see that −1 is not a square in Z7.

Problem 1.3 #27 It is helpful to have a table of squares in Z5, Z7, and Z9.
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We solve (a)–(d) by the method of completing the square.

(a) In Z7:

x2 + 5x + 4 = 0 ⇐⇒ (x + 6)2 − 6
2

+ 4 = 0
⇐⇒ (x + 6)2 = 4
⇐⇒ x + 6 = 2 or x + 6 = −2
⇐⇒ x = 3 or x = 6

(b) In Z5:

x2 + x + 3 = 0 ⇐⇒ (x + 3)2 − 3
2
+ 3 = 0

⇐⇒ (x + 3)2 = 1
⇐⇒ x + 3 = 1 or x + 3 = −1
⇐⇒ x = 3 or x = 1

(c) In Z5:
x2 + x + 2 = 0 ⇐⇒ (x + 3)2 − 3

2
+ 2 = 0

⇐⇒ (x + 3)2 = 2

There are no solutions.

(d) In Z9:

x2 + x + 7 = 0 ⇐⇒ (x + 5)2 − 5
2

+ 7 = 0
⇐⇒ (x + 5)2 = 0
⇐⇒ x + 5 = 0 or x + 5 = 3 or x + 5 = −3
⇐⇒ x = 4 or x = 7 or x = 1

(e) Suppose n ∈ Z is odd. Then gcd(n, 2) = 1, hence, by Theorem 5, p.54, 2 has
an inverse r in Zn. Concretely, we can let r = (n + 1)/2, which is an integer,
and we find that 2 · r = n + 1 = 1. For the next claim, we use completion of the
square: for all x ∈ Zn, we have

x2 + ax + b = 0 ⇐⇒ x2 + 2r ax + b = 0

⇐⇒ (x + r a)2 − r2a2 + b = 0

⇐⇒ (x + r a)2 = r2a2 − b.

This has a solution iff the right-hand-side r2a2 − b is a square in Zn.

Problem 3.1 #4 We use the subring test (Thm 5, p.194). Suppose that S, T are
subrings of R. To show that S ∩ T is a subring, we check conditions (1) and (2).
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But 0 ∈ S and 0 ∈ T , hence 0 ∈ S ∩ T ; similarly 1 ∈ S and 1 ∈ T , hence
1 ∈ S ∩ T . Thus, S ∩ T satisfies (1). For (2), suppose s, t ∈ S ∩ T . Then
s, t ∈ S, hence s + t, st,−s ∈ S because S is a subring. Also, s, t ∈ T , hence
s + t, st,−s ∈ T because T is a subring. It follows that s + t, st,−s ∈ S ∩ T .
Hence S ∩ T is a subring.

In general, S+T is not a subring of R, even if S and T are subrings. Consider, for
example, R = Z[x, y], the ring of polynomials in two variables, and let S = Z[x]
and T = Z[y] be the subrings of polynomials which only use the variable x and
y, respectively. Then S + T is the set of polynomials of the form

a0 + b1x + b2x
2 + b3x

3 + . . . + c1y + c2y
2 + c3y

3 + . . . ,

i.e., polynomials which only contain powers of x and powers of y (but no mixed
powers). Then x ∈ S + T and y ∈ S + T , but xy 6∈ S + T . Therefore, S + T is
not a subring.

Problem 3.1 #10 Suppose R is a ring, a, b ∈ R, and ab + ba = 1 and a 3 =
a. Multiplying the equation ab + ba = 1 by a from the left and right, we get
a(ab + ba)a = a1a, hence, by using the ring axioms, a 2ba + aba2 = a2. Also,
plugging a3 = a into ab + ba = 1, we get a3b + ba3 = 1. Then:

1 + a2 = (a3b + ba3) + (a2ba + aba2)
= a3b + a2ba + ba3 + aba2

= a2(ab + ba) + (ba + ab)a2 = a2 + a2.

Subtracting a2 from both sides of the equation, we obtain 1 = a2. NOTE: we
have not used commutativity of multiplication anywhere; thus, this result is true
in any ring, not just in a commutative ring.

Problem 3.1 #18 (a) The characteristic of Zn×Zm is the smallest positive integer
k such that k(Zn ×Zm) = 0 (or 0 if no such positive integer exists). But k(Zn ×
Zm) = kZn × kZm = 0 iff kZn = 0 and kZm = 0, iff n|k and m|k, iff
lcm(n, m)|k. Thus, char(Zn × Zm) = lcm(n, m).

More generally, we have char(R × S) = lcm(char R, charS).

(b) Note that, as an additive group, M2(R) is isomorphic to R × R × R × R,

via the isomorphism ϕ

(

a b
c d

)

= (a, b, c, d). The characteristic of a ring

only depends on the underlying additive group, thus char(M 2(R)) = char(R4) =
char(R). In particular, char(M2(Zn)) = n.

(c) char(Z × Zn) = lcm(char Z, char Zn) = lcm(0, n) = 0.
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