MAT 3343, APPLIED ALGEBRA, FALL 2003
Answersto Problem Set 2 (due Sept. 30)

Problem 1.2 #17 Proof 1: Suppose gcd(m,n) = 1 and ged(k,n) = 1. Let d be
a common divisor of mk and n. Suppose that d is divisible by some prime, say
pld. Then p|mk, hence p|m or p|k by Euclid’s Lemma (Thm 6(1), p.41). If p|m,
then p is a common divisor of m and n, contradicting gcd(m, n) = 1. Similarly, if
p|k, then p is a common divisor of k£ and n, contradicting gcd(k, n) = 1. In either
case, we have a contradiction, thus d has no prime factor. It follows that d = 1 or
d = —1. In either case, gcd(mk,n) = 1.

Proof 2: Suppose gcd(m,n) = 1 and ged(k,n) = 1. Let d = ged(mk,n), and
let d' = gcd(d, k). Then d’ divides & and n, hence d’ = 1 because gcd(k,n) = 1.
Thus d and k are relatively prime. Since d|mk, it follows by Theorem 5(2), p.41,
that d|m. But also d|n, hence d = 1 since gcd(m, n) = 1.

Proof 3: Suppose gcd(m,n) = 1 and gcd(k,n) = 1. Then, by Euclid’s algo-
rithm, there exist x, y, z, w such that mx + ny = 1 and kz + nw = 1. Then
ged(mk, n)|(mkxz +nkyz+nw) = (mx+ny)kz+nw = kz+nw = 1, hence
ged(mk,n) = 1.

Problem 1.2 #18 Suppose gcd(m,n) = 1 and d = ged(m + n,m — n). Then
d|m++n and d|m—n, so there exist a, b € Z such that ad = m+n and bd = m—n.
Also, since gcd(m, n) = 1, there exist z, y € Z such that xm + yn = 1. We have

z(ad + bd) + y(ad — bd) = 2xm + 2yn = 2.

But d divides the left-hand-side, thus d|2. As 2 is prime, it follows that d = 1 or
d=2.

Problem 1.2 #19 Let d = gcd(km, kn), and let e = gcd(m,n). We want to
show that d = ke. First, note that e/m and e|n, hence ke|km and ke|kn, hence
ke is a common divisor of km and kn, hence ke|d (by definition of d. For the
converse, use the fact (from Euclid’s algorith) that there exist a, b € Z such that
e = am + bn. Then ke = kam + kbn. But d|km and d|kn, hence d|kam + kbn,
hence d|ke. Because ke|d and d|ke, it follows that ke = +d.

Finally, by definition of gcd, we have assumed that e, d > 0. If we also assume
k > 0, then it follows that ke = d. Otherwise, if & < 0, then ke = —d, and the
statement is false. Thus, problem 1.2 #19 is incorrect; the additional assumption
k > 0 should have been made.

Problem 1.2#24 Leta = 2n+1and b = 2n+ 3 be two consecutive odd integers.
Then ged(a, b) = ged(a,b — a) = ged(a,2) = ged(a — 2n,2) = ged(1,2) =1
(by repeated application of Example 3, p.38).

Problem 1.2 #25 Suppose a = 2n+ 1, b = 2n + 3, and ¢ = 2n + 5 are three
consecutive odd numbers, where n > 0. We claim that if a, b, c are all prime, then
n =1and (a,b,c) = (3,5,7). We first prove that one of a, b, c must be divisible
by 3. To prove this, consider 7w € Z3. There are three cases to consider: Case 1:
7 = 0, in which case b = 2n + 3 = 0 and 3|2n + 3. Case 2: @ = T, in which case
@ =2n+1=0and3|2n + 1. Case 3: w = 2, in which case ¢ = 2n + 5 = 0 and
3|2n + 5. In either case, 3 divides one of the numbers a, b, c.

Now if a, b, c are all prime, and one of them is divisible by 3, then this number
must actually be equal to 3. This leaves two possibilities: (a,b,c) = (3,5,7),
(a,b,c) = (1,3,5). The latter triple contains the number 1, which is not prime;
therefore (3, 5, 7) is the only triple of consecutive prime numbers.

Problem 1.3#19 We want to show that there exists no integer & such that 7|(k 2 +
1). Equivalently, there exists no element k € Zz such that k2 +1 = 0. Equiva-
lently, there exists no element k € Z, such that k2 = —1 = 6. There are seven
cases to check:
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We see that —1 is not a square in Zr.

Problem 1.3#27 It is helpful to have a table of squares in Z 5, Z~, and Z.

Zs Z7 Zg
- 7
=3 2173 = 0
3’ |72 = 1|2 = 1
T = 1|17 =1|1T =1
0 =0/0 =10/0 =20
7 =117 =1|17 =1
2 | 2° = 1|22 = 1
3 213 =0
7 7




We solve (a)—(d) by the method of completing the square.

@) InZ7:
22 +50+4=0 < (246)2-6+4=0
= (z+6)2=14
= zr+6=20rx+6=-2
— gz=30rz=6
(b) In Zs:
2247+3=0 < (2+3)2-3+3=0
= (z43)3=1
<~ gz+4+3=1lorz+3=-1
= gz=3orz=1
(€)InZs:
P2+T+2=0 < (2+3)2-3+2=0
= (x+3)2=2
There are no solutions.
(d) In Zg:
22474+7=0 < (2+5)2-5+7=0
< (x+5)?2=0
<~ z+5=00rz+5=30rz+5=-3
= g=4dorz=Torz=1

(e) Suppose n € Z is odd. Then gcd(n, 2) = 1, hence, by Theorem 5, p.54, 2 has
an inverse 7 in Z,,. Concretely, we can let » = (n + 1)/2, which is an integer,
and we find that 2 - 7 = n + 1 = 1. For the next claim, we use completion of the
square: forall z € Z,,, we have

?+ar+b=0 <= 22+2Fax+b=0
= (z+7a)?-F@+b=0
<= (¢+Ta)? =7"a"—b.

This has a solution iff the right-hand-side 72@> — b is a square in Z,,.

Problem 3.1 #4 We use the subring test (Thm 5, p.194). Suppose that S, T" are
subrings of R. To show that S N T is a subring, we check conditions (1) and (2).

ButO € Sand0 € T, hence 0 € SN T; similarly 1 € Sand 1 € T, hence
1 € SNT. Thus, S N T satisfies (1). For (2), suppose s,t € SNT. Then
s,t € S, hence s + t, st,—s € S because S is a subring. Also, s,t € T, hence
s +t,st,—s € T because T is a subring. It follows that s + ¢,st,—s € SNT.
Hence S N T is a subring.

In general, S+ 7T is not a subring of R, even if S and T are subrings. Consider, for
example, R = Z[z, y], the ring of polynomials in two variables, and let S = Z|x]
and T' = Z[y| be the subrings of polynomials which only use the variable 2 and
y, respectively. Then S + T is the set of polynomials of the form

ao + b1 + box® + b3z + .. 4 1y + oy + sy + .

i.e., polynomials which only contain powers of = and powers of y (but no mixed
powers). Thenx € S+ Tandy € S+ T,butxy ¢ S + T. Therefore, S + T'is
not a subring.

Problem 3.1 #10 Suppose R is aring, a,b € R, and ab + ba = 1 and a® =
a. Multiplying the equation ab + ba = 1 by a from the left and right, we get
a(ab + ba)a = ala, hence, by using the ring axioms, a2ba + aba? = a?. Also,
plugging a® = a into ab + ba = 1, we get a®b + ba® = 1. Then:

1+a®> = (a®b+ba®)+ (a®ba + aba?)
= a®b+ a*ba + ba® + aba®
= a*(ab+ba)+ (ba +ab)a? = a®+a’.

Subtracting a? from both sides of the equation, we obtain 1 = a2. NOTE: we
have not used commutativity of multiplication anywhere; thus, this result is true
in any ring, not just in a commutative ring.

Problem 3.1#18 (a) The characteristic of Z,, x Z,, is the smallest positive integer
k such that k(Z,, x Z,,) = 0 (or 0 if no such positive integer exists). But k(Z,, x
L) = kZy,, X kZ,, = 0 iff kZ,, = 0 and kZ,, = 0, iff n|k and m|k, iff
lem(n, m)|k. Thus, char(Z,, x Z.,) = lem(n, m).

More generally, we have char(R x S) = lem(char R, char S).

(b) Note that, as an additive group, M2(R) is isomorphicto R x R x R X R,
b
d
only depends on the underlying additive group, thus char(M o (R)) = char(R*) =
char(R). In particular, char(M3(Z,,)) = n.

(c) char(Z x Z,,) = lem(char Z, char Z,,) = lem(0,n) = 0.

via the isomorphism ¢ < Z = (a,b,c¢,d). The characteristic of a ring



