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Problem 1. Let p be prime. We count the number of invertible elements in Zpk .
An element x̄ is invertible iff gcd(x, pk) = 1, iff p6 |x. Thus, the non-invertible
elements are precisely the multiples of p, or which there are pk−1 in Zpk . The
remaining elements are invertible, and their number is pk − pk−1 = (p− 1)pk−1.

Problem 2. Find all the divisors of 3 + 4i in Z[i]. Let z = 3 + 4i. If z = uw for
some u, w ∈ Z[i], then |u||w| = |z| = 5, and thus either |u| 6

√
5 or |w| 6

√
5.

Thus, for any pair of divisors, one of them has absolute value 6
√

5. Moreover,
u|z iff iu|z iff −u|z iff −iu|z; thus, we need only check for divisors in the first
quadrant. Thus it suffices to check whether the following numbers are divisors:

u z/u divisor? divisors found:
0 undef no
1 3 + 4i yes {1, i,−1,−i, 3 + 4i,−4 + 3i,−3− 4i, 4− 3i}
1 + i 3.5 + 0.5i no
1 + 2i 2.2− 0.4i no
2 1.5 + 2i no
2 + i 2 + i yes {2 + i,−1 + 2i,−2− i, 1− 2i}

Problem 3. Suppose R is a ring which satisfies the cancellation property, i.e.,
whenever ab = ac and a 6= 0, then b = c. To prove that R is an integral domain,
assume that xy = 0 and x 6= 0. Then xy = x0, hence by cancellation, y = 0. It
follows that R has no zero divisors.

Problem 4. Let f : C→ C be the function on complex numbers defined by f(a+
bi) = a − bi (complex conjugation). To prove that f is a ring homomorphism,
assume that z = a + bi and w = c + di are arbitrary complex numbers. Then:

(a) f(z +w) = f(a+ c+(b+d)i) = a+ c− (b+d)i = (a− bi)+(c−di) =
f(z) + f(w).

(b) f(0) = f(0 + 0i) = 0− 0i = 0.

(c) f(zw) = f((a+ bi)(c+di)) = f(ac− bd+(ad+ bc)i) = ac− bd− (ad+
bc)i = (a− bi)(c− di) = f(z)f(w).

(d) f(1) = f(1 + 0i) = 1− 0i = 1.
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Problem 5. (a) We find the inverse by row operations:








0 1 2 3 1 0 0 0
1 0 4 0 0 1 0 0
0 2 1 3 0 0 1 0
1 4 2 1 0 0 0 1









⇐⇒









1 0 4 0 0 1 0 0
0 1 2 3 1 0 0 0
0 2 1 3 0 0 1 0
1 4 2 1 0 0 0 1









(exch. rows 1+2)

⇐⇒









1 0 4 0 0 1 0 0
0 1 2 3 1 0 0 0
0 2 1 3 0 0 1 0
0 4 3 1 0 4 0 1









(subtract r.1 from r.4)

⇐⇒









1 0 4 0 0 1 0 0
0 1 2 3 1 0 0 0
0 0 2 2 3 0 1 0
0 0 0 4 1 4 0 1









(subtract 2· r.2 from r.3),
(add r.2 to r.4)

⇐⇒









1 0 0 1 4 1 3 0
0 1 0 1 3 0 4 0
0 0 2 2 3 0 1 0
0 0 0 4 1 4 0 1









(subtract r.3 from r.2),
(subtract 2·r.3 from r.1)

⇐⇒









1 0 0 0 0 0 3 1
0 1 0 0 4 4 4 1
0 0 2 0 0 3 1 2
0 0 0 4 1 4 0 1









(add r.4 to r.1 and r.2),
(add 2·r.4 to r.3)

⇐⇒









1 0 0 0 0 0 3 1
0 1 0 0 4 4 4 1
0 0 1 0 0 4 3 1
0 0 0 1 4 1 0 4









(multiply r.3 by 3),
(multiply r.4 by 4)

So the inverse matrix is

A−1 =









0 0 3 1
4 4 4 1
0 4 3 1
4 1 0 4









.
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(b) We write the systems as an augmented matrix and solve.








2 1 0 1 2
1 0 2 0 1
0 1 2 2 1
1 2 0 1 0









⇐⇒









1 2 0 2 1
1 0 2 0 1
0 1 2 2 1
1 2 0 1 0









L1 ← 2 · L1

⇐⇒









1 2 0 2 1
0 1 2 1 0
0 1 2 2 1
0 0 0 2 2









L2 ← L2 − L1, L3 ← L3 − L1,

⇐⇒









1 2 0 2 1
0 1 2 1 0
0 0 0 1 1
0 0 0 0 0









L3 ← L3 − L2, L4 ← L4 + L3,

The answer is more easily written if we continue to row reduced form:

⇐⇒









1 0 2 0 1
0 1 2 1 0
0 0 0 1 1
0 0 0 0 0









L1 ← L1 − 2 · L2

⇐⇒









1 0 2 0 1
0 1 2 0 2
0 0 0 1 1
0 0 0 0 0









L2 ← L2 − L3

So we have: w = 1, z = a is a free variable, y = 2− 2a, x = 1− 2a, thus

(x, y, z, w) = (1, 2, 0, 1) + a(−2,−2, 1, 0) = (1, 2, 0, 1) + a(1, 1, 1, 0)

Problem 6. (a) 0101010, 1100011, 1001001, 1110000

(b) For each received codeword w, we calculate wH , which is called the syndrome
of w. w is a valid codeword iff wH = 0. Otherwise, the row of H which is equal
to wH determines the position of the error.
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received word syndrome error position corrected codeword plaintext
1100110 101 2 1000110 1000
1100011 000 - 1100011 1100
1111000 111 4 1110000 1110
0111110 111 4 0110110 0110
1010101 000 - 1010101 1010

Problem 7. Since H =

(

I
A

)

, the generator matrix is G = (−A|I), or

G =





































1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 1 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 1





































(Word processing definitely helps in writing this matrix; it’s a lot of work to write
it by hand). This is not quite a “systematic” code, because the “parity bits” are
attached at the beginning of the codewords, instead of the end.

(a) We encode:

01010101010 → 0101 01010101010
11101110111 → 0010 11101110111

(b) There was a typo in the problem: 1000100010001000 has 16 digits, whereas
we need 15. So let us decode v = 100010001000100. The syndrome is vH =
(0110). As this corresponds to the 7th row of H , a single-bit error must have
occured in position 7 (assuming that it was indeed a single-bit error, not a multi-bit
error, which we cannot correct). So the corrected codeword is 1000 10101000100,
corresponding to the plaintext 10101000100.
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