MAT 3343, APPLIED ALGEBRA, FALL 2003

Answers to Problem Set 4

Peter Selinger

Problem 1. Let p be prime. We count the number of invertible elements in \mathbb{Z}_{p^k} . An element \bar{x} is invertible iff $gcd(x, p^k) = 1$, iff $p \not| x$. Thus, the non-invertible elements are precisely the multiples of p, or which there are p^{k-1} in \mathbb{Z}_{p^k} . The remaining elements are invertible, and their number is $p^k - p^{k-1} = (p-1)p^{k-1}$.

Problem 2. Find all the divisors of 3 + 4i in $\mathbb{Z}[i]$. Let z = 3 + 4i. If z = uw for some $u, w \in \mathbb{Z}[i]$, then |u||w| = |z| = 5, and thus either $|u| \leq \sqrt{5}$ or $|w| \leq \sqrt{5}$. Thus, for any pair of divisors, one of them has absolute value $\leq \sqrt{5}$. Moreover, u|z iff iu|z iff -u|z iff -iu|z; thus, we need only check for divisors in the first quadrant. Thus it suffices to check whether the following numbers are divisors:

u	z/u	divisor?	divisors found:
0	undef	no	
1	3+4i	yes	$\{1, i, -1, -i, 3+4i, -4+3i, -3-4i, 4-3i\}$
1+i	3.5 + 0.5i	no	
1+2i	2.2 - 0.4i	no	
2	1.5 + 2i	no	
2+i	2+i	yes	$\{2+i,-1+2i,-2-i,1-2i\}$

Problem 3. Suppose R is a ring which satisfies the cancellation property, i.e., whenever ab = ac and $a \neq 0$, then b = c. To prove that R is an integral domain, assume that xy = 0 and $x \neq 0$. Then xy = x0, hence by cancellation, y = 0. It follows that R has no zero divisors.

Problem 4. Let $f : \mathbb{C} \to \mathbb{C}$ be the function on complex numbers defined by f(a + bi) = a - bi (complex conjugation). To prove that f is a ring homomorphism, assume that z = a + bi and w = c + di are arbitrary complex numbers. Then:

(a)
$$f(z+w) = f(a+c+(b+d)i) = a+c-(b+d)i = (a-bi)+(c-di) = f(z)+f(w).$$

- (b) f(0) = f(0+0i) = 0 0i = 0.
- (c) f(zw) = f((a+bi)(c+di)) = f(ac-bd+(ad+bc)i) = ac-bd-(ad+bc)i = (a-bi)(c-di) = f(z)f(w).
- (d) f(1) = f(1+0i) = 1 0i = 1.

Problem 5. (a) We find the inverse by row operations:

$\left(\begin{array}{c}0\\1\\0\\1\end{array}\right)$	$1 \\ 0 \\ 2 \\ 4$	$2 \\ 4 \\ 1 \\ 2$	${3 \\ 0 \\ 3 \\ 1 }$	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}$	$\left(\begin{array}{c}0\\0\\0\\1\end{array}\right)$	
$\iff \left(\begin{array}{c} 1\\ 0\\ 0\\ 1\end{array}\right)$	${0 \\ 1 \\ 2 \\ 4}$	$4 \\ 2 \\ 1 \\ 2$	${0 \\ 3 \\ 3 \\ 1}$	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} $	${0 \\ 0 \\ 1 \\ 0 }$	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right)$	(exch. rows 1+2)
$\iff \left(\begin{array}{c} 1\\ 0\\ 0\\ 0\end{array}\right)$	${0 \\ 1 \\ 2 \\ 4}$	$4 \\ 2 \\ 1 \\ 3$	${0 \\ 3 \\ 3 \\ 1}$	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} $	$\begin{array}{c}1\\0\\0\\4\end{array}$	${0 \\ 0 \\ 1 \\ 0 }$	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right)$	(subtract r.1 from r.4)
$\iff \left(\begin{array}{c} 1\\ 0\\ 0\\ 0\end{array}\right)$	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} $	$4 \\ 2 \\ 2 \\ 0$	${0 \\ 3 \\ 2 \\ 4}$	$egin{array}{c} 0 \\ 1 \\ 3 \\ 1 \end{array}$	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 4 \end{array} $	${0 \\ 0 \\ 1 \\ 0 }$	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right)$	(subtract 2· r.2 from r.3), (add r.2 to r.4)
$\iff \left(\begin{array}{c} 1\\ 0\\ 0\\ 0\end{array}\right)$	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} $	${0 \\ 0 \\ 2 \\ 0 }$	$1 \\ 1 \\ 2 \\ 4$	$4 \\ 3 \\ 3 \\ 1$	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 4 \end{array} $	${3 \\ 4 \\ 1 \\ 0 }$	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right)$	(subtract r.3 from r.2), (subtract 2·r.3 from r.1)
$\iff \left(\begin{array}{c} 1\\ 0\\ 0\\ 0\end{array}\right)$	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} $	${0 \\ 0 \\ 2 \\ 0 }$	${0 \\ 0 \\ 0 \\ 4}$	$ \begin{array}{c} 0 \\ 4 \\ 0 \\ 1 \end{array} $	${0 \\ 4 \\ 3 \\ 4}$	${3 \\ 4 \\ 1 \\ 0 }$	$\begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}$	(add r.4 to r.1 and r.2), (add 2·r.4 to r.3)
$\iff \left(\begin{array}{c} 1\\ 0\\ 0\\ 0\end{array}\right)$	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} $	${0 \\ 0 \\ 1 \\ 0 }$	${0 \\ 0 \\ 0 \\ 1 }$	$ \begin{array}{c} 0 \\ 4 \\ 0 \\ 4 \end{array} $	${0 \\ 4 \\ 4 \\ 1 }$	${3 \\ 4 \\ 3 \\ 0 }$	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 4 \end{pmatrix}$	(multiply r.3 by 3), (multiply r.4 by 4)

So the inverse matrix is

$$A^{-1} = \left(\begin{array}{rrrr} 0 & 0 & 3 & 1 \\ 4 & 4 & 4 & 1 \\ 0 & 4 & 3 & 1 \\ 4 & 1 & 0 & 4 \end{array}\right)$$

(b) We write the systems as an augmented matrix and solve.

$$\begin{pmatrix} 2 & 1 & 0 & 1 & | & 2 \\ 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 2 & 2 & | & 1 \\ 1 & 2 & 0 & 1 & | & 0 \end{pmatrix}$$

$$\Leftrightarrow \quad \begin{pmatrix} 1 & 2 & 0 & 2 & | & 1 \\ 1 & 0 & 2 & 0 & | & 1 \\ 0 & 1 & 2 & 2 & | & 1 \\ 1 & 2 & 0 & 1 & | & 0 \end{pmatrix} \quad L_1 \leftarrow 2 \cdot L_1$$

$$\Leftrightarrow \quad \begin{pmatrix} 1 & 2 & 0 & 2 & | & 1 \\ 0 & 1 & 2 & 1 & | & 0 \\ 0 & 1 & 2 & 2 & | & 1 \\ 0 & 0 & 0 & 2 & | & 2 \end{pmatrix} \quad L_2 \leftarrow L_2 - L_1, L_3 \leftarrow L_3 - L_1,$$

$$\Leftrightarrow \quad \begin{pmatrix} 1 & 2 & 0 & 2 & | & 1 \\ 0 & 1 & 2 & 1 & | & 0 \\ 0 & 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} \quad L_3 \leftarrow L_3 - L_2, L_4 \leftarrow L_4 + L_3,$$

The answer is more easily written if we continue to row reduced form:

$$\iff \begin{pmatrix} 1 & 0 & 2 & 0 & | & 1 \\ 0 & 1 & 2 & 1 & | & 0 \\ 0 & 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} \quad L_1 \leftarrow L_1 - 2 \cdot L_2$$
$$\iff \begin{pmatrix} 1 & 0 & 2 & 0 & | & 1 \\ 0 & 1 & 2 & 0 & | & 2 \\ 0 & 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} \quad L_2 \leftarrow L_2 - L_3$$

So we have: w = 1, z = a is a free variable, y = 2 - 2a, x = 1 - 2a, thus

$$(x, y, z, w) = (1, 2, 0, 1) + a(-2, -2, 1, 0) = (1, 2, 0, 1) + a(1, 1, 1, 0)$$

Problem 6. (a) 0101010, 1100011, 1001001, 1110000

(b) For each received codeword w, we calculate wH, which is called the *syndrome* of w. w is a valid codeword iff wH = 0. Otherwise, the row of H which is equal to wH determines the position of the error.

received word	syndrome	error position	corrected codeword	plaintext
1100110	101	2	1000110	1000
1100011	000	-	1100011	1100
1111000	111	4	1110000	1110
0111110	111	4	0110110	0110
1010101	000	-	1010101	1010
1100011 1111000 0111110 1010101	000 111 111 000	- 4 4	1100011 1110000 0110110 1010101	1100 1110 0110 1010

Problem 7. Since
$$H = \begin{pmatrix} I \\ \hline A \end{pmatrix}$$
, the generator matrix is $G = (-A|I)$, or

	(1	1	0	0	1	0	0	0	0	0	0	0	0	0	0)
	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0
	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0
	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0
G =	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0
	1	1	0	1	0	0	0	0	0	0	1	0	0	0	0
	0	0	1	1	0	0	0	0	0	0	0	1	0	0	0
	1	0	1	1	0	0	0	0	0	0	0	0	1	0	0
	0	1	1	1	0	0	0	0	0	0	0	0	0	1	0
	$\begin{pmatrix} 1 \end{pmatrix}$	1	1	1	0	0	0	0	0	0	0	0	0	0	1 /
	`														/

(Word processing definitely helps in writing this matrix; it's a lot of work to write it by hand). This is not quite a "systematic" code, because the "parity bits" are attached at the beginning of the codewords, instead of the end.

(a) We encode:

(b) There was a typo in the problem: 1000100010001000 has 16 digits, whereas we need 15. So let us decode v = 100010001000100. The syndrome is vH = (0110). As this corresponds to the 7th row of H, a single-bit error must have occured in position 7 (assuming that it was indeed a single-bit error, not a multi-bit error, which we cannot correct). So the corrected codeword is $1000 \ 10101000100$, corresponding to the plaintext 10101000100.