MAT 3343, APPLIED ALGEBRA, FALL 2003

Answers to Problem Set 5

Peter Selinger

Problem 1. In \mathbb{Z}_{10} , we calculate: p(0) = 8, p(1) = 0, p(2) = 4, p(3) = 0, p(4) = 8, p(5) = 8, p(6) = 0, p(7) = 4, p(8) = 0, p(9) = 8. Thus, there are 4 roots. This does not contradict the root theorem, because \mathbb{Z}_{10} is not a field.

Problem 2. (a) First note that p(x) is not a unit nor zero; thus, it is either irreducible or reducible. p(x) has a root iff it has a linear factor. Clearly, if p(x) has a linear factor, it is reducible. Conversely, if p(x) is reducible, then one of its factors must be of degree 1, since p(x), as a third-degree polynomial, cannot have two factors of degree 2.

(b) Let $F = \mathbb{R}$, the field of real numbers. Let $q(x) = (x^2 + 1)(x^2 + 2)$. Clearly, q(x) is reducible; on the other hand, q(x) > 0 for all $x \in \mathbb{R}$, thus q has no roots in \mathbb{R} .

Problem 3. We use the Euclidean Algorithm in the Euclidean ring $\mathbb{Z}_2[x]$. By repeated long division (details not shown), we find that

$$\begin{array}{rcl} & \text{quotient:} & \text{remainder:} \\ x^8 + x^7 + x^5 + x^3 + x^2 + x + 1 \\ & = & (x^7 + x^6 + x^4 + x^3 + 1) \\ x^7 + x^6 + x^4 + x^3 + 1 \\ & = & (x^4 + x^3 + x^2 + 1) \\ x^4 + x^3 + x^2 + 1 \\ & = & (x^3 + x + 1) \\ \end{array} \quad (x + 1) + 0 \end{array}$$

Thus the gcd is $x^3 + x + 1$.

Problem 4. (a) The irreducible polynomials of degree up to 4 in \mathbb{Z}_2 were given in class. They are:

An irreducible polynomial of degree 5 must have highest and lowest coefficient 1, so it must be of the form $x^5 + ax^4 + bx^3 + cx^2 + dx + 1$. Moreover, it must

have an odd number of non-zero coefficients (or else x + 1 will be a factor). This leaves 8 possibilities. Of these 8 possible choices, 2 are divisible by $x^2 + x + 1$. The remaining ones are irreducible:

$$\begin{array}{ll} x^5+x^4+x^3+x^2+1, & x^5+x^4+x^3+x+1, & x^5+x^4+x^2+x+1, \\ x^5+x^3+x^2+x+1, & x^5+x^3+1, & x^5+x^2+1, \end{array}$$

- (b) We check whether any of the polynomials from (a) are factors of $p(x) = x^{12} + x^{10} + x^7 + x^6 + 1$:
- Degree 1: x and x + 1 are not factors, because neither 0 nor 1 is a root of p(x).
- *Degree 2:* The only irreducible quadratic polynomial in $\mathbb{Z}_2[x]$, $x^2 + x + 1$, is not a factor (the remainder of the division is 1).
- *Degree 3:* Of the two irreducible polynomials of degree 3, only $x^3 + x^2 + 1$ and $x^3 + x + 1$ is a factor of p(x), with quotient $q(x) = x^9 + x^8 + x^6 + x^4 + x^3 + x^2 + 1$. The quotient q(x) has no more factors of degree 3.
- *Degree 4:* Of the three irreducible polynomials of degree 4, only $x^4 + x^3 + 1$ is a factor of q(x), with quotient $q'(x) = x^5 + x^2 + 1$. The quotient is irreducible.

We therefore obtain $p(x) = (x^5 + x^2 + 1)(x^4 + x^3 + 1)(x^3 + x^2 + 1).$

Problem 5. (a) In $\mathbb{Q}[x]$, the polynomial $p(x) = x^5 - 1$ has a root x = 1, so x - 1 is a factor. We have $p(x) = (x - 1)(x^4 + x^3 + x^2 + x + 1)$. Let $q(x) = x^4 + x^3 + x^2 + x + 1$. Then q(x) is a cyclotonic polynomial; by a theorem proved in class, q(x) is irreducible in $\mathbb{Q}[x]$. [Recall the proof: Let y + 1 = x, then

$$\begin{array}{rcl} q(y+1) &=& ((y+1)^5-1)/(y+1-1) \\ &=& (y^5+5y^4+10y^3+10y^2+5y+1-1)/y \\ &=& y^4+5y^3+10y^2+10y+5. \end{array}$$

Then q(y+1) is irreducible in $\mathbb{Q}[y]$ by Eisenstein's criterion (with p = 5). It follows that q(x) is irreducible in $\mathbb{Q}[x]$.]

(b) In Z₂[x], the polynomial p(x) = x⁵ + 1 has a root x = 1, and thus p(x) = (x+1)(x⁴+x³+x²+x+1). The polynomial q(x) = x⁴+x³+x²+x+1 has no roots, and therefore it has no linear factors. So if q(x) was reducible, it would have to have a quadratic factor; the only irreducible quadratic is x² + x + 1, which is not a factor of q(x), thus q(x) is irreducible.

- (c) if $\mathbb{Z}_5[x]$, the polynomial $p(x) = x^4 + 1$ has no roots (p(0) = 1, p(1) = 2, p(2) = 2, p(3) = 2, p(4) = 2). Thus it has no linear factor. However, $y^2 + 1$ has roots $y = \pm 2$, thus $y^2 + 1 = (y+2)(y-2)$. It follows, by letting $y = x^2$, that $x^4 + 1 = (x^2 + 2)(x^2 2)$.
- (d) The polynomial $p(x) = 2x^3 + x^2 + 4x + 2$ in $\mathbb{Q}[x]$, if reducible, must have a linear factor (since deg p = 3). By the rational roots theorem, the only possible roots are of the form r/s, where r|2 and s|2. This leaves as possible roots $x = \pm 1/2, \pm 1, \pm 2$. Of these, we find that only x = -1/2 is a root. We have $p(x) = (x + 1/2)(2x^2 + 4) = (2x + 1)(x^2 + 2)$. Since $x^2 + 2$ has no more rational roots, it is irreducible.
- (e) In $\mathbb{Q}[x]$, the polynomial $p(x) = x^4 9x + 3$ is irreducible by Eisenstein's criterion, with p = 3.
- (f) The polynomial $p(x) = x^8 16$ has no rational roots; in fact, its only real roots are $\pm\sqrt{2}$. The complex roots of p(x) lie on a circle of radius $\sqrt{2}$; they are $\sqrt{2}e^{2\pi i\theta/8}$, where $\theta = 0, 1, 2, ..., 7$. Or concretely, these roots are $\pm\sqrt{2}, \pm i\sqrt{2}, 1 \pm i, -1 \pm i$. We know that each conjugate pair of complex linear factors determines a real quadratic factor, so p(x) factors into irreducible factors over $\mathbb{R}[x]$ as $p(x) = (x+\sqrt{2})(x-\sqrt{2})(x^2+2)(x^2+$ $2x+2)(x^2-2x+2)$. Only the first two factors are not rational; they combine to a rational factor $(x^2 - 2)$. So we have $p(x) = (x^2 - 2)(x^2 + 2)(x^2 +$ $2x+2)(x^2-2x+2)$. These four factors are irreducible over $\mathbb{Q}[x]$ (because their roots, as we saw, are irrational, or also by Eisenstein's criterion).

Problem 6. Over \mathbb{Z}_5 , a quadradic polynomial $x^2 + ax + b$ is reducible iff it is of the form (x + c)(x + d), for some $c, d \in \mathbb{Z}_5$. Here, the order of c, d does not matter, so there are 15 possibilities for c, d:

c	d	(x+c)(x+d)	С	d	(x+c)(x+d)	c	d	(x+c)(x+d)
0	0	$x^2 + 0x + 0$	1	1	$x^2 + 2x + 1$	2	3	$x^2 + 0x + 1$
0	1	$x^2 + 1x + 0$	1	2	$x^2 + 3x + 2$	2	4	$x^2 + 1x + 3$
0	2	$x^2 + 2x + 0$	1	3	$x^2 + 4x + 3$	3	3	$x^2 + 1x + 4$
0	3	$x^2 + 3x + 0$	1	4	$x^2 + 0x + 4$	3	4	$x^2 + 2x + 2$
0	4	$x^2 + 4x + 0$	2	2	$x^2 + 4x + 4$	4	4	$x^2 + 3x + 1$

Thus these 15 polynomials are reducible. The 10 remaining ones are irreducible:

- **Problem 7.** (a) $x^3 + x^2 + x + 1 = (x^2 + 1)(x + 1)$: not irreducible in $\mathbb{Q}[x]$.
- (b) $3x^8 4x^6 + 8x^5 10x + 6$ is irreducible in $\mathbb{Q}[x]$ by Eisenstein's criterion, with p = 2.
- (c) $x^4 + x^2 6$. Note that $y^2 + y 6$ has roots y = 2 and y = -3, thus $y^2 + y 6 = (y+3)(y-2)$, thus $x^4 + x^2 6 = (x^2+3)(x^2-2)$. Thus not irreducible in $\mathbb{Q}[x]$.
- (d) $p(x) = 4x^3 + 3x^2 + x + 1$ has no roots in $\mathbb{Z}_5[x]$, because p(0) = 1, p(1) = 4, p(2) = 2, p(3) = 4, p(4) = 4. Therefore it has no linear factors. Since p(x) is of degree 3, it must be irreducible.
- **Problem 8.** (a) $a = \sqrt{2}/\sqrt[3]{5}$. We find that $a^6 = 8/25$, hence a is a root of $x^6 8/25$, or of $25x^6 8$. By Eisenstein's criterion with p = 2, this is irreducible in $\mathbb{Q}[x]$, hence it has no rational root. Therefore a is irrational.
- (b) $a = \sqrt{2} + \sqrt{3}$. We find that $a^2 = 2 + 2\sqrt{6} + 3$, therefore $a^2 5 = 2\sqrt{6}$. Squaring again, we get $(a^2 5)^2 = 24$, or $a^4 10a^2 + 25 = 24$. Therefore, *a* is a root of $x^4 - 10x^2 + 1$. By the rational roots theorem, the only possible rational roots are ± 1 ; however, these are not actually roots. Thus, $x^4 - 10x^2 + 1$ has no rational roots. This proves that *a* is irrational.

Problem 9. Let $p(x) = 3x^3 + 4x^2 - x - 2$. By the rational roots theorem, all possible rational roots of p(x) are of the form r/s, where r|2 and s|3. Thus, $r = \pm 1, \pm 2$ and $s = \pm 1, \pm 3$. This leaves eight potential rational roots: $\pm 1, \pm 2, \pm 1/3, \pm 2/3$. Of these, we find that only 2/3 and -1 are actual roots. [In fact, p(x) = (3x - 2)(x + 1)(x + 1).]