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Problem 1. In Z10, we calculate: p(0) = 8, p(1) = 0, p(2) = 4, p(3) = 0,
p(4) = 8, p(5) = 8, p(6) = 0, p(7) = 4, p(8) = 0, p(9) = 8. Thus, there are 4
roots. This does not contradict the root theorem, because Z 10 is not a field.

Problem 2. (a) First note that p(x) is not a unit nor zero; thus, it is either irre-
ducible or reducible. p(x) has a root iff it has a linear factor. Clearly, if p(x) has a
linear factor, it is reducible. Conversely, if p(x) is reducible, then one of its factors
must be of degree 1, since p(x), as a third-degree polynomial, cannot have two
factors of degree 2.

(b) Let F = R, the field of real numbers. Let q(x) = (x2 + 1)(x2 + 2). Clearly,
q(x) is reducible; on the other hand, q(x) > 0 for all x ∈ R, thus q has no roots
in R.

Problem 3. We use the Euclidean Algorithm in the Euclidean ring Z 2[x]. By
repeated long division (details not shown), we find that

quotient: remainder:
x8 + x7 + x5 + x3 + x2 + x + 1

= (x7 + x6 + x4 + x3 + 1) (x) + (x4 + x3 + x2 + 1)

x7 + x6 + x4 + x3 + 1
= (x4 + x3 + x2 + 1) (x3 + x) + (x3 + x + 1)

x4 + x3 + x2 + 1
= (x3 + x + 1) (x + 1) + 0

Thus the gcd is x3 + x + 1.

Problem 4. (a) The irreducible polynomials of degree up to 4 in Z 2 were given
in class. They are:

linear: x, x + 1
quadratic: x2 + x + 1
cubic: x3 + x2 + 1, x3 + x + 1
quartic: x4 + x3 + x2 + x + 1, x4 + x3 + 1, x4 + x + 1

An irreducible polynomial of degree 5 must have highest and lowest coefficient
1, so it must be of the form x5 + ax4 + bx3 + cx2 + dx + 1. Moreover, it must
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have an odd number of non-zero coefficients (or else x + 1 will be a factor). This
leaves 8 possibilities. Of these 8 possible choices, 2 are divisible by x2 + x + 1.
The remaining ones are irreducible:

x5 + x4 + x3 + x2 + 1, x5 + x4 + x3 + x + 1, x5 + x4 + x2 + x + 1,
x5 + x3 + x2 + x + 1, x5 + x3 + 1, x5 + x2 + 1,

(b) We check whether any of the polynomials from (a) are factors of p(x) =
x12 + x10 + x7 + x6 + 1:

Degree 1: x and x + 1 are not factors, because neither 0 nor 1 is a root of p(x).

Degree 2: The only irreducible quadratic polynomial in Z 2[x], x2 + x + 1, is not
a factor (the remainder of the division is 1).

Degree 3: Of the two irreducible polynomials of degree 3, only x 3 + x2 + 1 and
x3 + x + 1 is a factor of p(x), with quotient q(x) = x9 + x8 + x6 + x4 +
x3 + x2 + 1. The quotient q(x) has no more factors of degree 3.

Degree 4: Of the three irreducible polynomials of degree 4, only x 4 + x3 + 1
is a factor of q(x), with quotient q ′(x) = x5 + x2 + 1. The quotient is
irreducible.

We therefore obtain p(x) = (x5 + x2 + 1)(x4 + x3 + 1)(x3 + x2 + 1).

Problem 5. (a) In Q[x], the polynomial p(x) = x5 − 1 has a root x = 1, so
x − 1 is a factor. We have p(x) = (x − 1)(x4 + x3 + x2 + x + 1). Let
q(x) = x4 + x3 + x2 + x + 1. Then q(x) is a cyclotonic polynomial; by a
theorem proved in class, q(x) is irreducible in Q[x]. [Recall the proof: Let
y + 1 = x, then

q(y + 1) = ((y + 1)5 − 1)/(y + 1 − 1)
= (y5 + 5y4 + 10y3 + 10y2 + 5y + 1 − 1)/y
= y4 + 5y3 + 10y2 + 10y + 5.

Then q(y + 1) is irreducible in Q[y] by Eisenstein’s criterion (with p = 5).
It follows that q(x) is irreducible in Q[x].]

(b) In Z2[x], the polynomial p(x) = x5 + 1 has a root x = 1, and thus p(x) =
(x+1)(x4 +x3+x2 +x+1). The polynomial q(x) = x4 +x3 +x2+x+1
has no roots, and therefore it has no linear factors. So if q(x) was reducible,
it would have to have a quadratic factor; the only irreducible quadratic is
x2 + x + 1, which is not a factor of q(x), thus q(x) is irreducible.
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(c) if Z5[x], the polynomial p(x) = x4 + 1 has no roots (p(0) = 1, p(1) = 2,
p(2) = 2, p(3) = 2, p(4) = 2). Thus it has no linear factor. However,
y2 +1 has roots y = ±2, thus y2 +1 = (y+2)(y−2). It follows, by letting
y = x2, that x4 + 1 = (x2 + 2)(x2 − 2).

(d) The polynomial p(x) = 2x3 + x2 + 4x + 2 in Q[x], if reducible, must
have a linear factor (since deg p = 3). By the rational roots theorem, the
only possible roots are of the form r/s, where r|2 and s|2. This leaves as
possible roots x = ±1/2,±1,±2. Of these, we find that only x = −1/2 is
a root. We have p(x) = (x + 1/2)(2x2 + 4) = (2x + 1)(x2 + 2). Since
x2 + 2 has no more rational roots, it is irreducible.

(e) In Q[x], the polynomial p(x) = x4 − 9x + 3 is irreducible by Eisenstein’s
criterion, with p = 3.

(f) The polynomial p(x) = x8 − 16 has no rational roots; in fact, its only
real roots are ±

√
2. The complex roots of p(x) lie on a circle of radius√

2; they are
√

2e2πiθ/8, where θ = 0, 1, 2, . . . , 7. Or concretely, these
roots are ±

√
2, ±i

√
2, 1 ± i, −1 ± i. We know that each conjugate pair

of complex linear factors determines a real quadratic factor, so p(x) factors
into irreducible factors over R[x] as p(x) = (x+

√
2)(x−

√
2)(x2+2)(x2+

2x+2)(x2−2x+2). Only the first two factors are not rational; they combine
to a rational factor (x2 − 2). So we have p(x) = (x2 − 2)(x2 + 2)(x2 +
2x+2)(x2−2x+2). These four factors are irreducible over Q[x] (because
their roots, as we saw, are irrational, or also by Eisenstein’s criterion).

Problem 6. Over Z5, a quadradic polynomial x2 + ax + b is reducible iff it is
of the form (x + c)(x + d), for some c, d ∈ Z5. Here, the order of c, d does not
matter, so there are 15 possibilities for c, d:

c d (x + c)(x + d)
0 0 x2 + 0x + 0
0 1 x2 + 1x + 0
0 2 x2 + 2x + 0
0 3 x2 + 3x + 0
0 4 x2 + 4x + 0

c d (x + c)(x + d)
1 1 x2 + 2x + 1
1 2 x2 + 3x + 2
1 3 x2 + 4x + 3
1 4 x2 + 0x + 4
2 2 x2 + 4x + 4

c d (x + c)(x + d)
2 3 x2 + 0x + 1
2 4 x2 + 1x + 3
3 3 x2 + 1x + 4
3 4 x2 + 2x + 2
4 4 x2 + 3x + 1

Thus these 15 polynomials are reducible. The 10 remaining ones are irreducible:

x2 + 2 x2 + x + 1 x2 + 2x + 3 x2 + 3x + 3 x2 + 4x + 1
x2 + 3 x2 + x + 2 x2 + 2x + 4 x2 + 3x + 4 x2 + 4x + 2
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Problem 7. (a) x3 + x2 + x + 1 = (x2 + 1)(x + 1): not irreducible in Q[x].

(b) 3x8 − 4x6 + 8x5 − 10x + 6 is irreducible in Q[x] by Eisenstein’s criterion,
with p = 2.

(c) x4 + x2 − 6. Note that y2 + y − 6 has roots y = 2 and y = −3, thus
y2 + y − 6 = (y + 3)(y − 2), thus x4 + x2 − 6 = (x2 + 3)(x2 − 2). Thus
not irreducible in Q[x].

(d) p(x) = 4x3+3x2+x+1 has no roots in Z5[x], because p(0) = 1, p(1) = 4,
p(2) = 2, p(3) = 4, p(4) = 4. Therefore it has no linear factors. Since
p(x) is of degree 3, it must be irreducible.

Problem 8. (a) a =
√

2/ 3
√

5. We find that a6 = 8/25, hence a is a root of
x6 − 8/25, or of 25x6 − 8. By Eisenstein’s criterion with p = 2, this is
irreducible in Q[x], hence it has no rational root. Therefore a is irrational.

(b) a =
√

2 +
√

3. We find that a2 = 2 + 2
√

6 + 3, therefore a2 − 5 =
2
√

6. Squaring again, we get (a2 − 5)2 = 24, or a4 − 10a2 + 25 = 24.
Therefore, a is a root of x4 − 10x2 + 1. By the rational roots theorem, the
only possible rational roots are ±1; however, these are not actually roots.
Thus, x4 − 10x2 + 1 has no rational roots. This proves that a is irrational.

Problem 9. Let p(x) = 3x3 + 4x2 − x − 2. By the rational roots theorem,
all possible rational roots of p(x) are of the form r/s, where r|2 and s|3. Thus,
r = ±1,±2 and s = ±1,±3. This leaves eight potential rational roots: ±1, ±2,
±1/3, ±2/3. Of these, we find that only 2/3 and −1 are actual roots. [In fact,
p(x) = (3x − 2)(x + 1)(x + 1).]
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