MAT 3343, APPLIED ALGEBRA, FALL 2002

Final Exam, December 17, 2002

Prof. P. Selinger

Problem 1. For any integer $a \in \mathbb{Z}$, define $a\mathbb{Z} = \{ax | x \in \mathbb{Z}\}$. Prove: for all $a, b \in \mathbb{Z}$, b|a if and only if $a\mathbb{Z} \subseteq b\mathbb{Z}$.

Problem 2. Find all solutions of 28x = 35 in \mathbb{Z}_{77} . How many different solutions are there?

Problem 3. True or false? For each of the following statements, give a proof or a counterexample. Here, $a, b, c, d, e, f \in \mathbb{Z}$.

- (a) If gcd(a, b) = 1 and c|a, then gcd(c, b) = 1.
- (b) If gcd(a, b) = c and gcd(d, e) = f, then gcd(ad, be) = cf.
- (c) If gcd(a, b) = c, then $gcd(a^2, b^2) = c^2$.

Problem 4. Find all solutions (x, y, z) of the following system of linear equations in \mathbb{Z}_7 .

1x	+	3y	+	5z	=	0
1x	+	2y	+	3z	=	4
2x	+	3y	+	4z	=	5

Problem 5. What is the greatest common divisor of the following two polynomials in \mathbb{Z}_2 :

$$p(x) = x^5 + x^4 + x^3 + x^2 + x + 1, \quad q(x) = x^4 + x^2 + x + 1.$$

Problem 6. Which of the following polynomials are irreducible in $\mathbb{Q}[x]$? Give reasons.

- (a) $x^3 + x^2 + x + 1$.
- (b) $x^4 + 3x^2 6$.
- (c) $x^3 + x^2 5$.
- (d) $x^5 + 12x^4 + 18x^3 + 30x + 12$.

Problem 7. Find all rational roots of $2x^3 + x^2 + x - 1$. How do you know you have all of them? **Problem 8.** Consider the (7, 3)-code with generating polynomial $x^4 + x^2 + x + 1$ over \mathbb{Z}_2 .

- (a) Make a list of the 8 valid codewords of this code.
- (b) Encode the message 001, 110, 101.
- (c) What is the minimum Hamming distance of this code? How many errors does this code detect, and how many does it correct?
- (d) Decode 1011011, 0111011, 1101110.

Problem 9. Ziggy Hamming, a distant but much less well-known relative of the famous R.W. Hamming, proposes an error-correcting (8,4)-code with generator matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

- (a) What is the minimum Hamming distance of this code? How many errors does this code detect / correct? The minimum weight of any non-zero codeword, and thus the minimum Hamming distance of the code, is 4. Thus the code detects 3 errors and corrects 1.
- (b) Find a parity check matrix for this code.

Problem 10. Let α be a primitive element in GF(16), where $\alpha^4 = \alpha + 1$.

(a) Find an irreducible polynomial $p(x) \in \mathbb{Z}_2[x]$ such that $p(\alpha^3) = 0$. What are the other roots of p(x) in GF(16)?

Let $y = \alpha^3$. Then we read from the table: $y^0 = \alpha^0 = 0001$, $y^1 = \alpha^3 = 1000$, $y^2 = \alpha^6 = 1100$, $y^3 = \alpha^9 = 1010$, $y^4 = \alpha^{12} = 1111$. These five elements are linearly dependent, and we find that $y^4 + y^3 + y^2 + y + 1 = 0$. Thus, $p(x) = x^4 + x^3 + x^2 + x + 1$ is the smallest degree polynomial which has $y = \alpha^3$ as a root (hence p(x) is also irreducible).

To find the other roots of p(x), recall that $p(x^2) = p(x)^2$, and hence, whenever x is a root, then so is x^2 . Thus, p(x) has roots α^3 , α^6 , α^{12} , $\alpha^{24} = \alpha^9$. As a polynomial of degree 4, p(x) can have at most four distinct roots, so these are all of them.

(b) Find the generator polynomial of the two-error-correcting BCH code of length 15, starting with the primitive element α .

Problem 11. How many different necklaces consisting of 8 beads can be formed if there are 4 bead colors available? Regard two necklaces as identical if one can be obtained from the other by rotations only.

Problem 12. Recall that the order of a modulo q is the smallest n such that $a^n \equiv 1 \pmod{q}$. Prove that if q > 2 is odd and the order of 2 modulo q is q - 1, then q is prime. Is the converse true?