MAT 3343, APPLIED ALGEBRA, FALL 2003

Problem Set 3, due Oct 10, 2003

Peter Selinger

Problem 1. My public RSA key is $\langle N, e \rangle = \langle 11639, 65 \rangle$. Send me an encrypted message. Encode each 2-letter pair as a 4-digit decimal number with Space=00, A=01, B=02, etc. For instance, the message "Hello" would be encoded in plaintext as the sequence of numbers 0805 1212 1500. (Calculators are allowed for this problem!)

Problem 2. Suppose that N = pq is the product of two distinct primes, possibly very large. Suppose p, q are unknown, but N is known. Further, assume given an element $x \in \mathbb{Z}_N$ such that $x^2 = x$, but $x \neq 0, 1$. Show that from this information, one can efficiently compute p and q.

Problem 3. State and prove the generalized Chinese Remainder Theorem (see Exercise 1.1, Handout 3 or Problem 34, p.114)

Problem 4. Suppose N = pqr is the product of three distinct odd primes.

- (a) How many square roots of unity are there in \mathbb{Z}_N ?
- (b) Show that the set of such square roots can be computed efficiently if p, q, r are known.
- (c) Compute the set of square roots of unity for N = pqr where p = 7, q = 11, and r = 13.
- (d) Suppose p, q, r are not known, but some square root of unity $x \in \mathbb{Z}_N$ is known such that $x \neq \pm 1$. What information, if any, can be gained about the prime factorization of N? (Hint: use a similar idea as in the first paragraph of the proof of Theorem 3.2, Handout 3).
- **Problem 5.** (a) Use the Fermat pseudoprime test (Algorithm 1.3, Handout 4) to show that the number 119 is not prime. In particular, find some *b* such that the number 119 fails the Fermat pseudoprime test at base *b*.
 - (b) Use the Miller-Rabin primality test (Algorithm 3.4, Handout 4) to show that 561 is not prime. (In particular, find some *b* such that the number 561 fails the strong pseudoprime test at base *b*).