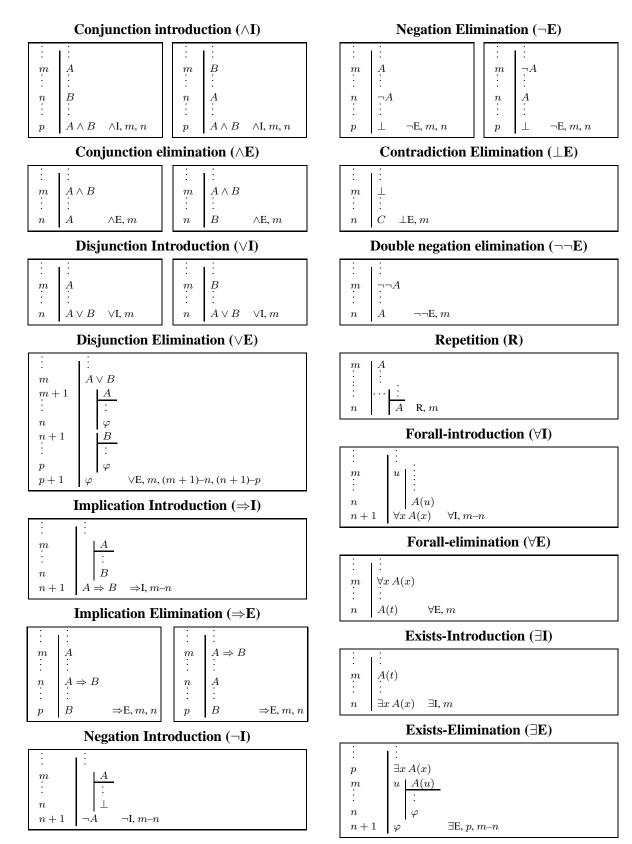
MAT 3361, INTRODUCTION TO MATHEMATICAL LOGIC, Fall 2004

Handout 1: Rules of Fitch-style natural deduction



The biconditional

To simplify our formal proof system, we do not introduce any special rules for the connective \Leftrightarrow . Instead, we simply regard the formula $A \Leftrightarrow B$ as an *abbreviation* for $(A \Rightarrow B) \land (B \Rightarrow A)$.

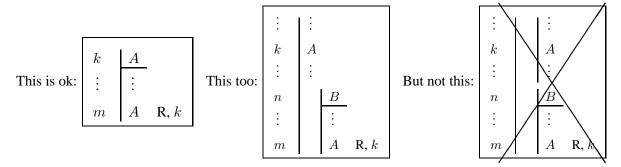
Repetition (**R**)

Let A be a formula written at line k (either as a hypothesis, or as a formula already proven). Then one can repeat A at line m if:

(1) k < m, and

(2) every vertical from line k continues without interruption to line m.

Examples:



Derived rules

It is possible to create additional rules to be used in natural deduction proofs. These rules are derived from the official rules which are stated above; they can be regarded as "shortcuts". If you want to use such a derived rule, you first have to prove it (i.e., give a separate formal proof which justifies the rule).

One example of a derived rule is De Morgan's law for disjunction,

$$\neg (A \lor B) \vdash \neg A \land \neg B.$$

We can give a formal proof of De Morgan's law using only the rules of natural deduction given above:

Having given this formal proof, we can now use De Morgan's law as a derived rule, as follows:

$$\begin{array}{c|c} \vdots & \vdots \\ m & \neg(A \lor B) \\ \vdots & \vdots \\ n & \neg A \land \neg B \quad \text{De Morgan, } m \end{array}$$

Note that there are three other De Morgan's laws, namely

$$\neg A \land \neg B \vdash \neg (A \lor B)$$

$$\neg (A \land B) \vdash \neg A \lor \neg B$$

$$\neg A \lor \neg B \vdash \neg (A \land B)$$

Each of them must be proven separately in natural deduction; thereafter, it can be used as a derived rule.

Problem 1. Give formal proofs of the remaining three laws of De Morgan.

Problem 2. For any proposition φ , let $r(\varphi)$ be the rank of φ and let $c(\varphi)$ be the number of connectives in φ (connectives are $\{\bot, \land, \lor, \rightarrow, \leftrightarrow, \neg\}$). (a) Write down recursive definitions of r and c (for r, a definition was already given in class). (b) Prove, by induction, that $r(\varphi) \leq c(\varphi)$ for all $\varphi \in \text{PROP}$.

Problem 3. Prove that there exists no $\varphi \in PROP$ such that the length of φ is 6 symbols.

Problem 4. For the purpose of this problem, we ignore the connectives " \perp ", " \rightarrow " and " \leftrightarrow ", i.e., we consider propositions built from " \wedge ", " \vee ", and " \neg " only. The *De Morgan dual* of a proposition φ is defined as follows:

$$dm(p_i) = p_i$$

$$dm((\varphi \land \psi)) = (dm(\varphi) \lor dm(\psi))$$

$$dm((\varphi \lor \psi)) = (dm(\varphi) \land dm(\psi))$$

$$dm((\neg \varphi)) = (\neg dm(\varphi))$$

(a) Let r be the rank function. Prove $r(\varphi) = r(dm(\varphi))$ for all φ .

(b) Let [-] be a valuation, and define [-]' by $[\varphi]' = 1 - [dm(\varphi)]$, for all φ . Prove that [-]' is a valuation.

(c) A proposition φ is called *satisfiable* if there exists a valuation [-] such that $[\![\varphi]\!] = 1$. Prove that φ is satisfiable if and only if $dm(\varphi)$ is not valid.

36. (A + C) v (B + D) ⊣ (A ∧ B) + (C ∨ D). 37. A + B. C + D. (TB). v (TD) ⊣ (TA) v (TC). 38. A + (C ∨ D). (A ∨ D) v E. A + (TC) ⊣ D ∨ E. 39. A ⊣ ຠA. 40. TTTA ≡ TA.	(NOTE: The ココ rule is required for nos. 41-53.) 41. ト A v (1A). 42. (A + B) v C, A + (TC) ト (B + C) + (TA). 43. T(A ∧ (TB)) ト A + B.	49 [*] \vdash (A \land B) \lor (TA) \lor (\neg B). 50 [*] \neg (A \land B) \vdash (\neg A) \lor (\neg B). 51 [*] \vdash (A \rightarrow B) \lor (\neg A) 51 [*] \vdash (A \rightarrow B) \lor (\neg A \rightarrow A) 52 [*] A \rightarrow (B \lor C) \vdash (A \rightarrow B) \lor (A \rightarrow C). 52 [*] (A \land B) \rightarrow (C \lor D) \vdash (A \rightarrow C) \lor (B \rightarrow D). (cf. no. 36) 53 [*] (A \land B) \rightarrow (C \lor D) \vdash (A \rightarrow C) \lor (B \rightarrow D). (cf. no. 36) 54. Prove that if $\phi \land \psi \vdash$ B and $\phi \land$ B \vdash C then $\phi \land \psi \vdash$ C.	55. Prove that if $\varphi \vdash \psi$ then (i) $\varphi \land \theta \vdash \psi \land \theta$, (ii) $\varphi \lor \theta \vdash \psi \lor \theta$, (iii) $\theta \vdash \varphi \vdash \theta + \psi$, (iv) $\psi \vdash \theta \vdash \varphi + \theta$. 56. Prove that $\Gamma \cup \{\varphi\} \vdash \psi$ iff $\Gamma \vdash \varphi + \psi$ (Γ is any set of formulae).
9. $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$. 10. $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$. 11. $A \land (A \lor B) \equiv A$. 12. $A \lor (A \land B) \equiv A$. 13. $\vdash \neg (A \land (\neg A))$. 14. $A \rightarrow (\neg A) \vdash \neg A$.	 (A → B) ∧ (A → C) = A → (B ∧ C). A → B → C ⊢ A → C. ⊢ A → (B → A). (A → B) → C ⊢ B → C. 	24. $A \lor B \vdash (B + A) + A$. 25. $A \lor B \vdash (\neg B) \rightarrow (C + A)$. 26. $(B \rightarrow A) \land (A \lor B) \vdash A$. 27. $A \lor B \vdash (\neg A) \rightarrow B$. 28. $(\neg A) \lor B \vdash A \rightarrow B$. 29. $(\neg A) \lor (\neg B) \vdash \neg (\overrightarrow{A} \land B)$. 30. $\neg (A \lor B) = (\neg A) \land (\neg B)$.	31. $(A \lor B) + C = (A + C) \land (B + C)$. 32. $(A + B) \lor (A + C) \vdash A + (B \lor C)$. 33. $(A + C) \lor (B + C) \vdash (A \land B) + C$. 34. $((\uparrow A) \lor C) \land (B + C) \vdash (A + B) + C$. 35. $\vdash (A + C) + ((B + C) + ((A \lor B) + C))$.

. .

4

.