
2 Soundness and Completeness for Analytic Tableaux

Recall that we have called a branch of a tableau “complete” if every formula on
it “has been used”. With our convention on using the letters α and β for signed
formulas, we may express this more precisely:

A branch θ of a tableau T is complete if for every α ∈ θ, both α1, α2 ∈ θ, and for
every β ∈ θ, either β1 ∈ θ or β2 ∈ θ.

As before, we say that a tableau T is completed if every branch θ of T is either
closed or complete.

2.1 Tableaux and valuations

Let [[−]] be a valuation. We extend [[−]] to signed formulas in the obvious way
by letting [[TX ]] = [[X ]] and [[FX ]] = 1 − [[X ]]. Thus, FX is true under a given
valuation iff X is false under that valuation.

Definition. Let [[−]] be a valuation. We say that a branch θ of a tableau T is true
under [[−]] if for all ϕ ∈ θ, [[ϕ]] = 1. We say that T is true under [[−]] if there is at
least one branch θ of T such that θ is true under [[−]].

2.2 Soundness

Soundness states that if a formula X is provable by the tableaux method, then X

is a tautology.

Theorem 2.1 (Soundness). Suppose X is a proposition, and T is a closed tableau
with origin FX . Then X is a tautology.

The proof depends on the following lemma:

Lemma 2.2. Suppose T1 and T2 are tableaux such that T2 is an immediate exten-
sion of T1. Then T2 is true under every interpretation under which T1 is true.

Proof. Suppose T1 is true under the given valuation [[−]]. Then T1 has at least
one true branch θ. Now T2 was obtained by adding one or two successors to the
endpoint of some branch θ1 of T1. If θ1 6= θ, then θ is still a branch of T2, hence
T2 is true and we are done. Assume therefore that θ1 = θ. Then θ was extended
by one of the following operations:

5

(A) For some α ∈ θ, we have added α1 or α2, so θ ∪ {α1} or θ ∪ {α2} is a
branch of T2. But [[α]] = 1, therefore [[α1]] = 1 and [[α2]] = 1, therefore T2

contains a true branch.

(B) For some β ∈ θ, we have added both β1 and β2, so both θ ∪ {β1} and
θ ∪ {β2} are branches of T2. But [[β]] = 1, therefore [[β1]] = 1 or [[β2]] = 1,
therefore T2 contains at least one true branch. �

Lemma 2.3. Let [[−]] be a fixed valuation. For any tableau T , if the origin of T
is true under [[−]], then T is true under [[−]].

Proof. This is an immediate consequence of the previous lemma, by induction:
T is obtained from the origin by repeatedly extending the tableau in the sense of
Lemma 2.2, at each step preserving truth. �

Proof of the Soundness Theorem: Let T be a closed tableau with origin FX , and
let [[−]] be any valuation. Since T is closed, each branch contains some formula
and its negation, and therefore T cannot be true under [[−]]. From Lemma 2.3, it
follows that the origin of T is false under [[−]], thus [[FX ]] = 0, thus [[X ]] = 1.
Since [[−]] was arbitrary, it follows that X is a tautology. �

2.3 Completeness

Completeness is the converse of soundness: it states that if X is a tautology, then
X is provable by the tableaux method. In fact we will prove something slightly
stronger, namely, if X is a tautology, then every strategy for completing a tableaux
for X will lead to a closed tableaux.

Theorem 2.4 (Completeness). (a) Suppose X is a tautology. Then every com-
pleted tableau with origin FX must be closed.

(b) Suppose X is a tautology. Then X is provable by the tableaux method.

The main ingredient in the proof is the notion of a Hintikka set.

Definition. Let S be a (finite or infinite) set of signed formulas. Then S is called a
Hintikka set (or downward saturated) if it satisfies the following three conditions:

(H0) There is no propositional variable p such that both Tp ∈ S and Fp ∈ S.

(H1) If α ∈ S, then α1 ∈ S and α2 ∈ S.
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(H2) If β ∈ S, then β1 ∈ S or β2 ∈ S.

Note that, by definition, a complete non-closed branch θ is a Hintikka set.

If S is a set of signed formulas, we say that S is satisfiable if there exists a valua-
tion [[−]] such that for all ϕ ∈ S, [[ϕ]] = 1.

Lemma 2.5 (Hintikka Lemma). Every Hintikka set is satisfiable.

Proof. Let S be a Hintikka set, and define a valuation as follows: for any propo-
sitional variable p, let

[[p]] = 1 if Tp ∈ S,
[[p]] = 0 if Fp ∈ S,
[[p]] = 1 if Tp 6∈ S and Fp 6∈ S.

Note that, since S is a Hintikka set, we cannot have Tp ∈ S and Fp ∈ S at the
same time. Thus, this is well-defined. We recursively extend [[−]] to composite
formulas in the unique way.

We now claim that for all ϕ ∈ S, [[ϕ]] = 1. This is proved by induction on ϕ. For
atomic ϕ, this is true by definition. If ϕ is composite, then there are two cases:

(A) ϕ is some α. Then by (H1), α1 ∈ S and α2 ∈ S. By induction hypothesis,
[[α1]] = 1 and [[α2]] = 1, therefore [[α]] = 1.

(B) ϕ is some β. Then by (H2), β1 ∈ S or β2 ∈ S. By induction hypothesis,
[[β1]] = 1 or [[β2]] = 1, therefore [[β]] = 1.

Thus, [[ϕ]] = 1 for all ϕ ∈ S, and hence S is satisfiable as desired. �

Proof of the Completeness Theorem:

(a) Suppose X is a tautology, and T is some completed tableau with origin
FX . Suppose θ is some branch of T which is not closed. Then θ is a
Hintikka set by definition, hence satisfiable by the Hintikka Lemma. Thus,
there exists some valuation [[−]] which makes θ true. Since FX ∈ θ, we
have [[FX ]] = 1, hence [[X ]] = 0, hence X is not a tautology, a contradic-
tion. It follows that every branch of T is closed.

(b) It is easy to see that for any signed formula ϕ, there exists a completed
tableau with origin ϕ. For example, such a tableau is obtained by following
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Strategy 1 or Strategy 2 from Section 1. In particular, if X is a tautology,
then there exists a completed tableau with origin FX , which is closed by
(a), and hence X is provable by the tableaux method. �

2.4 Discussion of the proofs

We note the following features of the soundness and completeness proofs:

Soundness proof. The proof of soundness essentially proceeds by induction on
tableaux, as is evident in the proof of Lemma 2.3. One fixes a valuation, then
proves by induction that all derivations respect the given valuation.

This proof method is typical of soundness proofs in general. Compare this proof
e.g. to the soundness proof for natural deduction in Lemma 1.5.1 of van Dalen’s
book. Most of the time, soundness proofs are relatively easy.

Completeness proof. The central part of any completeness proof is a satisfiabil-
ity result: for a certain set of formulas, one must show that there exists a valuation
making all the formulas true. To see why this is central, notice that the complete-
ness property can be equivalently expressed as follows:

If X is not provable, then X is not a tautology.

Thus, it is natural to start by assuming that X is not provable (e.g., its analytic
tableau does not close). Now one must prove that X is not a tautology, which
amounts to finding a specific valuation which makes X false. In the case of ana-
lytic tableaux, this valuation is obtained using Hintikka’s lemma.

Compare this to the completeness proof for natural deduction in Section 1.5 of
van Dalen’s book. It uses a completely different method, yet the central lemma is
the one which allows one to construct a valuation, namely Lemma 1.5.11 (every
consistent set is satisfiable). The method used for constructing a suitable valua-
tion varies from proof system to proof system, and usually gets more difficult as
features are added to the logic.
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