
MAT 5361, TOPICS IN QUANTUM COMPUTATION, WINTER 2004
Answers to Homework 1

Problem 1.1 First, we verify the density matrix formula in case of a pure state. This
was already almost done in class: it is a simple matter of re-expressing the probability
diagram with matrices:









αᾱ αβ̄ αγ̄ αδ̄
βᾱ ββ̄ βγ̄ βδ̄
γᾱ γβ̄ γγ̄ γδ̄
δᾱ δβ̄ δγ̄ δδ̄









p0=αᾱ+ββ̄ 0
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p1=γγ̄+δδ̄1
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αᾱ αβ̄ 0 0
βᾱ ββ̄ 0 0
0 0 0 0
0 0 0 0

















0 0 0 0
0 0 0 0
0 0 γγ̄ γδ̄
0 0 δγ̄ δδ̄









What needs to be shown now is that this extends to mixed states as expected, i.e.,
linearly. For simplicity, consider a mixture of two pure states (mixtures of n pure states
can be treated similarly): Suppose the initial mixed state is m = λ0{v0} + λ1{v1},
where v0 = (α, β, γ, δ)T , v1 = (α′, β′, γ′, δ′)T , and λ0, λ1 > 0, λ0 + λ1 6 1.
There are four possible outcomes of the measurement, namely w 00 = (α, β, 0, 0),
w01 = (0, 0, γ, δ), w10 = (α′, β′, 0, 0), w11 = (0, 0, γ ′, δ′).

To deal with conditional probabilities correctly, let us write I i for the event “the
experiment starts in state vi”, Mk for the event “the outcome of the measurement is
k ∈ {0,1}”, and Oik for “Ii and Mk”; this event corresponds to the outcome wik .

Recall that P (A) denotes the probability of an event A, and P (A|B) denotes the
conditional probability of an event A, assuming the event B. Also recall Bayes’ law of
probabilities:

P (A|B) =
P (A and B)

P (B)

Note that P (Ii) = λi is given, and that P (Mk|Ii) = |wik|2 follows from out knowl-
edge of the pure case.

We are interested in two questions: (1) what are P (M0) and P (M1), and (2) as-
suming Mk has occurred, then in which mixed state will the system be after the mea-
surement?

The answer to the first question is an easy application of Bayes’ law. Because I0

and I1 are disjoint events and Mk ⊆ I0 ∪ I1, we have:

P (Mk) = P (Mk and I0) + P (Mk and I1)
= P (I0)P (Mk|I0) + P (I1)P (Mk|I1)
= λ0|w0k|2 + λ1|w1k|2.
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For the second question, the density matrix of the outgoing state, assuming that 0 has
been measured, is by definition the following (assuming here the ordinary normaliza-
tion convention, by which density matrices have trace 1):

D0 =
∑

ik

P (Oik|M0)
1

|wik|2
wikw∗

ik.

We can calculate:

P (Oi0|M0) = P (Ii and M0|M0) =
P (Ii and M0)

P (M0)
=

P (Ii)P (M0|Ii)

P (M0)
=

λi|wi0|2
P (M0)

and
P ((Oi1|M0) = P (Ii and M1|M0) = 0.

It follows that

D0 =
1

P (M0)

∑

i

λiwi0w
∗
i0.

By our advanced normalization convention, we multiply this probability by P (M 0), so
that the re-normalized density matrix in the measurement branch 0 is:

D′
0 =

∑

i

λiwi0w
∗
i0.

Finally, we note that if
∑

i

λiviv
∗
i =

(

A B
C D

)

was the density matrix of the initial mixed state of the system, then D ′
0 is just

D′
0 =

∑

i

λiwi0w
∗
i0 =

(

A 0
0 0

)

,

as was to be shown. The calculation for k = 1 is analogous. Note: in the above
calculations, we have ignored the possibility of zero denominators. A careful analysis
shows that zero denominators only occur where the corresponding numerator is also
zero, and we can drop such terms without affecting the validity of the overall argument.

Problem 1.2 (a) In finite dimension, all norms are equivalent. More specifically, when
A ∈ Cn×n and v ∈ Cn, we have

|Av|2 =
∑

i

(
∑

j

aijvj)
2

6
∑

i

(
∑

j

a2
ij)(

∑

j

v2
j ) = ‖A‖2|v|,

and thus ‖A‖ 6 ‖A‖2. It follows that if the theorem gives ‖B − λB ′‖2 6 ε, then
‖B − λB′‖ 6 ε holds as well.

(b) For the first part, note that |ABv| 6 ‖A‖|Bv| 6 ‖A‖‖B‖|v|, by definition of
‖A‖ and ‖B‖. Thus, |v| 6 1 implies that |ABv| 6 ‖A‖‖B‖. Since ‖AB‖ is the
supremum of all such |ABv|, we have ‖AB‖ 6 ‖A‖‖B‖.
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For the second part, first note that if A ∈ Cn′×n and B ∈ Cm′×m, and if w ∈ Cn

and u ∈ Cm, then (A ⊗ B)(w ⊗ u) = Aw ⊗ Bu, and |w ⊗ u| = |w||u|. Now,
assume |w| 6 1 and |u| 6 1. Then |Aw||Bu| = |Aw ⊗ Bu| = |(A ⊗ B)(w ⊗ u)| 6

‖A ⊗ B‖|w ⊗ u| = ‖A ⊗ B‖|w||u| 6 ‖A ⊗ B‖. By taking the supremum of the
left-hand-side, we get ‖A‖‖B‖ 6 ‖A ⊗ B‖. Conversely, assume v ∈ C

nm with
|v| 6 1. Then we can write v =

∑

i wi ⊗ ui in such a way that |v| =
∑

i |wi||ui|
— indeed, this is possible by writing v = (u1, . . . , un), and letting wi = ei. Then
(A ⊗ B)v = (A ⊗ B)(

∑

i wi ⊗ ui) =
∑

i(A ⊗ B)(wi ⊗ ui) =
∑

i(Awi ⊗ Bui),
thus |(A⊗B)v| 6

∑

i |Awi⊗Bui| 6
∑

i ‖A‖|wi|‖B‖|ui| = ‖A‖‖B‖∑

i |wi||ui| =
‖A‖‖B‖|v|. It follows that ‖A ⊗ B‖ 6 ‖A‖‖B‖.

(c) First, suppose that ‖B − λB ′‖ 6 ε, and let A = idn ⊗ B and A′ = idn ⊗ B′.
Then ‖A − λA′‖ = ‖idn ⊗ (B − λB′)‖ = ‖idn‖‖B − λB′‖ 6 1ε = ε. Thus, if a
gate is approximated within a certain error, then the error does not change by adding
additional perfect parallel wires.

Second, suppose B1, B2, B
′
1, B

′
2 are unitary gates and λ1, λ2 are unit scalars such

that ‖B1 − λ1B
′
1‖ 6 ε1 and ‖B2 − λ2B

′
2‖ 6 ε2, and let B = B1B2, B′ = B′

1B
′
2, and

λ = λ1λ2. Then

‖B − λB′‖ = ‖B1B2 − λ1λ2B
′
1B

′
2‖

= ‖B1B2 − λ1B
′
1B2 + λ1B

′
1B2 − λ1λ2B

′
1B

′
2‖

6 ‖B1B2 − λ1B
′
1B2‖ + ‖λ1B

′
1B2 − λ1λ2B

′
1B

′
2‖

= ‖B1 − λ1B
′
1‖‖B2‖ + ‖λ1B

′
1‖‖B2 − λ2B

′
2‖

6 ε1‖B2‖ + ε2‖λ1B
′
1‖

Since B2 and B′
1 are unitary, we have ‖B2‖ = ‖λ1B

′
1‖ = 1, and thus ‖B − λB ′‖ 6

ε1+ε2. This shows that error propagation is additive. The case for n gates now follows
by an easy induction.

(d) By part (c), we know that to approximate an n-gate circuit within ε, we must
approximate each gate within ε/n. By the Kitaev-Solovay Theorem, each gate can be
approximated within error ε/n by using at most c log d(n/ε) basic gates. Thus, the
total number of gates required is at most nc logd(n/ε). As a function of n, this behaves
like n logn, which is certainly bounded by a polynomial in n (in fact, much less than
O(n2)). So the approximation given by the Kitaev-Solovay Theorem scales well to
large quantum circuits.

Problem 1.3 (a) A ∈ Dn is maximal iff tr A = 1. Proof: suppose tr A = 1 and
A v B. Then B − A is positive, hence tr(B − A) > 0. But also tr(B − A) =
tr B − tr A 6 1 − 1 = 0, hence tr(B − A) = 0; since B − A is positive, it follows
that B −A = 0, hence A = B, so A was maximal. Conversely, suppose tr A < 1, and
let B = A + (1 − tr A)I , where I is the identity matrix. Then clearly tr B ∈ Dn and
A v B, but A 6= B, hence A is not maximal.

(b) This is tricky. We first consider the case where n = 1. In this case, a density
matrix is just a scalar 0 6 a 6 1. On scalars, define the relation a <0 b iff (a = 0 or
a < b). Then we have a << b iff a <0 b. Proof: suppose a << b and a 6= 0. Consider
ai = (1 − 1

i
)b, then b 6 BB���iai, therefore there is some i with a 6 ai, therefore a < b.

Conversely, suppose that a <0 b and b 6 BB���iai. If a = 0, then a 6 ai trivially.
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Otherwise a < b, and therefore a < BB���iai. by leastness of the upper bound, it follows
that a < ai for some ai.

Now we can do the case for general n. For A, B ∈ Dn, we have A << B iff for all
v ∈ Cn, v∗Av <0 v∗Bv. [Equivalently, all the eigenvalues of B−A are non-negative,
and any eigenvector of eigenvalue 0 of B − A is already an eigenvector of eigenvalue
0 of A.]

For example:
(

0 0
0 0

)

<<

(

0.5 0
0 0.5

)

,

(

0.2 0
0 0

)

<<

(

0.5 0
0 0

)

,
(

0.2 0
0 0.3

)

<<

(

0.5 0
0 0.5

)

,

(

0.2 0
0 0.5

)

6<<
(

0.5 0
0 0.5

)

.

Proof idea: The proof is mostly pointwise, but in the right-to-left direction, we need
to use compactness to show that i can be chosen uniformly for all v.

Proof: “⇒”: Suppose A << B, and take some v ∈ C
n. If v∗Av = 0, then there is

nothing to show. Else, we have v∗Av > 0. Let Ai = (1 − 1

i
)B, so that B = BB���iAi.

Therefore, A v Ai for some i. It follows that v∗Av 6 v∗Aiv, therefore v∗Aiv 6= 0.
Then v∗Aiv = (1 − 1

i
)v∗Bv < v∗Bv, so finally, v∗Av < v∗Bv, as desired.

“⇐”: For any positive matrix A, define null(A) = {v ∈ Cn | Av = 0} and
ran(A) = {Av | v ∈ Cn}. Note that null(A) and ran(A) are orthogonal complements
of each other; also v ∈ null(A) iff v∗Av = 0; these facts follow from diagonalization.
Also note that A v B implies null(B) ⊆ null(A).

Now assume that for all v, v∗Av <0 v∗Bv. Then, by definition, A v B. To show
that A << B, take a directed sequence (Ai) such that B v BB���iAi. Let B′ = BB���iAi,
and let S = {v ∈ ran(B ′) | |v| = 1}. As the unit ball of the finite dimensional space
ran(B′), the set S is thus a compact set.

Now for all i, let Si = {v ∈ S | v∗Aiv 6 v∗Av}. As a closed subset of the
compact set S, each Si is compact. Moreover, since the quantity v∗Aiv increases with
i, we have Si ⊇ Sj for i 6 j, so (Si)i is a decreasing sequence of compact sets. We
claim that the intersection eiSi is empty: for take some v ∈ S, then v∗Av <0 v∗Bv
by assumption, therefore v∗Av <0 v∗B′v, but v∗B′v 6= 0, hence v∗Av < v∗B′v.
But as i → ∞, we have v∗Aiv → v∗B′v, therefore there exists some i with v∗Aiv >
v∗Av, hence v 6∈ Si. So (Si)i is a decreasing sequence of compact sets with empty
intersection. It follows that some Si is already empty. Therefore, there exists some i
such that for all v ∈ S, v∗Aiv > v∗Av. We now claim that A v Ai. We already know
that v∗Av 6 v∗Aiv for all v ∈ S, and therefore for all v ∈ ran(B ′). Now take any
v ∈ C

n, then v can be written v = u + w, where u ∈ null(B ′), w ∈ ran(B′). Since
Ai v B′, we have u ∈ null(Ai); also, since A v B v B′, we have u ∈ null(A).
Therefore v∗Av = (u + w)∗A(u + w) = w∗Aw 6 w∗Aiw = (u + w)∗Ai(u + w) =
v∗Aiv. Since v was arbitrary, we have A v Ai, as desired, and thus A << B.

Problem 1.4

(a) F (A, B, C, D) = (A + C, B, D, 0).
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(b)

F

(

A B
C D

)

=









(a00 + x) −x (b00 + y) −y
−x x −y y

(c00 + z) −z (d00 + w) −w
−z z −w w









,

where A = (aij)ij , B = (bij)ij , etc, and x = a11 + b11 + c11 + d11, y =
a11 − b11 + c11 − d11, z = a11 + b11 − c11 − d11, w = a11 − b11 − c11 + d11.

(c) F (A, B, C, D) = (0, B + D, A + C, 0).

(d) F (A) = ( 1

2
A, 1

2
A).

(e) F

(

a b
c d

)

=

(

a b
c d

)

.

(f) F

(

A B
C D

)

=

(

A 0
0 D

)

.

(g) F

(

A B
C D

)

=

(

A 0
0 D

)

.

(h) F

(

A B
C D

)

= (

(

A 0
0 0

)

, NDN).

(i) As in class, we write Φ(Y ) for the superoperator obtained from this flow chart
by “plugging” the recursive call with the superoperator Y . We let F 0 = 0 and
Fi+1 = Φ(Fi). Let A = (aij)ij . We calculate:

F1(A) =









a00 a01 0 0
a10 a11 0 0
0 0 0 0
0 0 0 0









F2(A) =









a00 a01 0 0
a10 a11 0 0
0 0 a22 0
0 0 0 0









F3(A) = F2(A).

Thus, we reach a fixpoint where F (A) = BB���iFi(A) = F2(A). This is the deno-
tation of the recursively defined flowchart X .

Problem 1.5 (a) This is a superoperator. A Kraus representation is F (A) = UAU ∗,
where U = 1√

2
( 1 1 ); note that U ∗U = 1. A flow chart is: (input p; p ∗= H ; if

(measure p)=0 then discard p else diverge).
(b) This problem is best analyzed in terms of its characteristic matrix, which we

can easily write down:

χF =









1

3
0 1

6

1

6

0 1

3

1

6

1

6
1

6

1

6

1

3
0

1

6

1

6
0 1

3









5

This matrix is seen to be writable as a sum of rank 1 positive matrices:








1

6
0 1

6
0

0 0 0 0
1

6
0 1

6
0

0 0 0 0









+









1

6
0 0 1

6

0 0 0 0
0 0 0 0
1

6
0 0 1

6









+









0 0 0 0
0 1

6

1

6
0

0 1

6

1

6
0

0 0 0 0









+









0 0 0 0
0 1

6
0 1

6

0 0 0 0
0 1

6
0 1

6









,

and thus χF is positive, which proves that F is completely positive. Moreover, the
trace characteristic matrix is

χtr
F =

(

2

3

1

3
1

3

2

3

)

,

which is v I2. Therefore, F is a superoperator. A Kraus representation can be read off
from the above decomposition of χF , namely: F (A) =

∑4

i=1
UiAU∗

i , where

U1 =
1√
6

(

1 1
0 0

)

, U2 =
1√
6

(

1 0
0 1

)

, U3 =
1√
6

(

0 1
1 0

)

, U4 =
1√
6

(

0 0
1 1

)

.

Note that
∑

i UiU
∗
i =

(

2

3

1

3
1

3

2

3

)

v I2. A flow chart can be obtained from the

Kraus representation, as in the proof of Theorem 6.12 in [Selinger], but this requires
implementing a 16 × 16 unitary matrix. Instead of following the general procedure,
it is easier to guess a flow chart directly from the decomposition of χF . (input p;
with probability 2

3
do skip else (if (measure p)=0 then skip else diverge); if (coin) then

p ⊕= 1 else skip).

(c) This is not positive, e.g. F
(

1 −1
−1 1

)

= (1,−1).

(d) This is a superoperator. A Kraus representation is F (A) =
∑3

i=1
UiAU∗

i ,
where

U1 =
1√
2

(

1 0
0 1

)

, U2 =
1√
2

(

1 0
0 0

)

, U3 =
1√
2

(

0 0
0 1

)

.

Note that
∑

i U∗
i Ui =

(

1 0
0 1

)

. A possible flow chart is (input p; if (coin) then skip

else if (measure p) then skip else skip).
(e) This is a superoperator. A Kraus representation is:

F (A, B) = (U1AU∗
1 , U2AU∗

2 + U3AU∗
3 + V BV ∗, U4AU∗

4 ),

where

U1 =
1√
2
( 1 0 ), U2 =

1

2

(

1 0
0 0

)

, U3 =
1

2

(

0 0
1 0

)

, U4 = ( 0 1 ), V =
(

1 0
0 −i

)

.

Note that
∑

i U∗
i Ui =

(

1 0
0 1

)

and V ∗V =
(

1 0
0 1

)

. A flow chart is given by (input

b, q; if (b = 0) then (if (measure q)= 0 then (if (coin) then (discard q; exit 1) else

q ∗= H ; exit 2) else (discard q; exit 3)) else q ∗=
(

1 0
0 −i

)

; exit 2).
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Problem 1.6 Suppose F : Vσ → V ′
σ and G : Vτ → V ′

τ are superoperators. To
prove that F ⊕ G : Vσ⊕σ′ → Vτ⊕τ ′ is a superoperator, note that for A ∈ Dσ and
B ∈ Dτ , we have (F ⊕G)(A, B) = (FA, GB), which is clearly positive and satisfies
tr(FA, GB) = tr FA + tr GB 6 tr A + tr B, by assumption on F and G. Moreover,
for A ∈ Dρ⊗σ and B ∈ Dρ⊗τ , we have idρ⊗ (F ⊕G)(A, B) = ((idρ⊗F )(A), (idρ⊗
G)(B)), which is also still positive.

To show that F ⊗ G : Vσ⊗σ′ → Vτ⊗τ ′ is a superoperator, note that F ⊗ G =
(idσ′ ⊗G)◦(F ⊗ idτ ). The two component maps are completely positive by definition,
and they clearly satisfy the trace condition, because e.g. trσ′⊗τ ′ ◦(idσ′ ⊗ G)(A) =
(trσ′ ⊗(trτ ′ ◦G))(A) 6 (trσ′ ⊗ trτ )(A) = trσ′⊗τ A.

Problem 1.7 (a) We have directly from the definition: F v G iff idτ ⊗ (G − F )(A)
is positive for all τ and A, iff G − F is completely positive. This is the case iff χG−F

is a positive matrix, by a theorem from class. But χG−F = χG − χF , so this holds iff
χG − χF is positive, iff χF v χG.

(b) Let F : Vσ → V1. Clearly, if F is completely positive, then it is positive
by definition. Conversely, assume F is positive. Let χF = B = (bij), then B is
hermitian. By definition of χF , we have F (Eij) = bij , where Eij is the ij-unit matrix.
By linearity, F (A) = tr(BAT ) for all A. Now suppose B were not positive, then B
has some eigenvector v for a negative eigenvalue λ. Then let AT = vv∗, and we have
F (A) = tr(Bvv∗) = tr(v∗Bv) < 0, contradiction the positivity of F . Thus, B = χF

is positive, hence F is completely positive by the characterization theorem from class.
(c) Let F, G : Vσ → V1, then F v G iff G − F is completely positive iff G − F is

positive iff for all positive A, F (A) v G(A).
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