
MAT 5361, TOPICS IN QUANTUM COMPUTATION, WINTER 2004
Homework 1

Problem 1. Recall the law of measurement of pure quantum states (we give it here for
a 2-qubit state, with the left qubit being measured):

α |00〉 + β |01〉 + γ |10〉 + δ |11〉

p0=|α|2+|β|2
0
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p1=|γ|2+|δ|2
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α |00〉 + β |01〉 γ |10〉 + δ |11〉

Here, we assume |α|2 + |β|2 + |γ|2 + |δ|2 = 1, p0 is the probability of observing 0, and
p1 is the probability of observing 1. Using this, together with the definition of mixed
states, density matrices, and the normalization convention for density matrices, derive
the correctness of the density matrix formulation for measurement:
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Problem 2. Recall the result on the universality of a the H and CONTROLLED-V gates,
as quoted from R. Cleve, “An introduction to quantum complexity theory”:

Theorem. Let B be any two-qubit gate and ε > 0. Then there exists a quantum circuit
of size O(logd(1/ε)) (where d is a constant) consisting of only H and CONTROLLED-V
gates which computes a unitary operation B ′ that approximates B in the following
sense. There exists a unit complex number λ (i.e. with |λ| = 1) such that ‖B − λB ′‖2 6

ε.

Here, the “O”-notation (“big-oh” notation) is a notation from computer science.
It means that there exists a constant c such that the size of the quantum circuit is 6

c logd(1/ε). The purpose of this problem is to figure out whether this is “little” or “a
lot”.

(a) The operator norm of a matrix A is defined as ‖A‖ = sup{|Av|; |v| 6 1}.
Prove that the above theorem holds equally if the 2-norm ‖−‖ 2 is replaced by
the operator norm.

(b) Prove ‖AB‖ 6 ‖A‖‖B‖ and ‖A ⊗ B‖ = ‖A‖‖B‖.

(c) Prove that errors in quantum circuits are propagated linearly, i.e., for a quantum
circuit which consists of n gates, if each gate is approximated within ε, then the
whole circuit is approximated within nε. This is in contrast to classical analog
circuits and floating point arithmetic, where errors are propagated exponentially.
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(d) Given a quantum circuit consisting of n arbitrary binary gates, and given a cer-
tain tolerance ε > 0. How many H and CONTROLLED-V gates are needed to
approximate the given circuit within ε? As a function of n, is this quantity large
(e.g., exponential) or small (e.g., polynomial)?

Problem 3. Recall that Dn is the set of density matrices of dimension n:

Dn = {A ∈ C
n×n | A is hermitian positive and tr A 6 1},

with the Löwner partial order v defined by A v B iff B − A is positive. Also recall
that this forms a complete partial order, i.e., every increasing chain A 0 v A1 v . . .
has a least upper bound, denoted BB���iAi.

(a) What are the maximal elements of Dn with respect to v?

(b) Characterize the pairs of matrices for which A << B, according to the following
definition:

Definition. Let A, B be two elements in a complete partially ordered set. We
say that A is way below B, written A << B, if for all increasing chains (Ai)i∈N

with B v BB���iAi, there exists some i with A v Ai.

Problem 4. For each of the following flow chart procedures, calculate their denota-
tional semantics as a superoperator. In (e), p ⊕= q stands for q, p ∗= N c, i.e., an
application of the controlled-not gate, where q is the “controlling” and p is the “con-
trolled” qubit. In part (f), the “coin toss” refers to the flow chart from part (d). (i) is
a recursive procedure, similar, but not identical, to the one given in class.
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Problem 5. Which of the following functions are (1) positive, (2) completely positive,
(3) superoperators? For those which are superoperators, give a Kraus representation,
as well as a quantum flow chart.
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Problem 6. Prove: If F : Vσ → V ′
σ and G : Vτ → V ′

τ are superoperators, then so are
F ⊕ G : Vσ⊕σ′ → Vτ⊕τ ′ and F ⊗ G : Vσ⊗σ′ → Vτ⊗τ ′ .

Problem 7. Recall that for linear operators F, G : Vσ → Vσ′ , we define F v G iff
for all τ and for all positive A ∈ Vτ⊗σ, (idτ ⊗ F )(A) v (idτ ⊗ G)(A). (a) Prove:
F v G iff χF v χG. (b) Prove: In case σ ′ = 1, a linear operator F : Vσ → V1 is
completely positive iff it is positive. (This is not true for general σ ′). (c) Consequently,
for F, G : Vσ → V1, we have F v G iff for all positive A, F (A) v G(A).
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