
MAT 5361, TOPICS IN QUANTUM COMPUTATION, WINTER 2004
Homework 2

Problem 1. Recall that a traced monoidal category 〈C,⊗, Tr〉 is a symmetric monoidal
category 〈C,⊗〉, with symmetries cA,B : A ⊗ B → B ⊗ A, together with a family of
operations

TrX : C(A ⊗ X, B ⊗ X) → C(A, B),

satisfying the following four axioms:

1. Naturality. TrX(g ⊗ idX ; f ; h⊗ idX) = g; TrX f ; h.

2. Strength. TrX(g ⊗ f) = g ⊗ TrX f .

3. Symmetry sliding. TrY (TrX(f ; idB ⊗ cXY )) = TrX(TrY (idA ⊗ cXY ; f)).

4. Yanking. TrX(cXX) = idX .

Recall from class that there is a graphical language for traced monoidal categories. The
above four axioms are represented in the graphical language in Table ??. Recall that
we claimed in class that an equation follows from the above axioms if and only if the
corresponding graphs in the graphical language are isomorphic.

Prove the following equations without using this fact, i.e., directly from the axioms.
Hint: you may still reason graphically, but only using the transformation allowed by the
above axioms and those of the symmetric monoidal structure. Translate the resulting
proof into algebraic language.

(a) General sliding. TrY (f ; idB⊗g) = TrX(idA⊗g; f), where f : A⊗Y → B⊗X ,
g : X → Y .
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(b) Vanishing #1. TrX(TrY (f)) = TrX⊗Y (f), where f : A⊗X⊗Y → B⊗X⊗Y .

f

XxY

f

X Y

=

(c) Vanishing #2. TrI(f) = lA; f ; l−1
B , where f : A ⊗ I → B ⊗ I , and lA :

A → A ⊗ I and lB : B → B ⊗ I are the canonical isomorphisms given by the
symmetric monoidal structure.
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Problem 2. Recall the graphical axiomatization of categories with coproducts given in
class:
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Here, it is understood that each single line shown in these axioms can actually represent
several parallel lines. For instance, the following is an instance of axiom 2):
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Problem: derive the following 2 equations from the above axioms:
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Problem 3. In class, we have defined categorical structures in terms of constructors
and equations. For example, we defined products as follows:

A × B

f : A → B g : A → C

〈f, g〉 : A → B × C

π
B,C
1 : B × C → B π

B,C
2 : B × C → C

,

subject to these equations, where f : A → B, g : A → C, h : A → B × C:

π1 ◦ 〈f, g〉 = f

π2 ◦ 〈f, g〉 = g

〈π1 ◦ h, π2 ◦ h〉 = h

Many category theorists will instead prefer to define such structures in terms of univer-
sal properties. For instance, the definition of products in terms of a universal property
is the following: an object P is called a product of B and C if there are morphisms
π1 : P → B and π2 : P → C such that, for every object A and every pair of mor-
phisms f : A → B and g : A → C, there exists a unique morphism h : A → B × C

such that the following diagram commutes:
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(a) Prove that the two definitions are, in a suitable sense, equivalent.

(b) Using the “universal” definition, prove that products are uniquely determined,
i.e., if P and Q are products of B and C then P ∼= Q. Here, we say that
two objects P, Q are isomorphic, in symbols P ∼= Q, if there exist morphisms
a : P → Q and b : Q → P such that a ◦ b = idQ and b ◦ a = idP .

Problem 4. Recall that a symmetric monoidal category 〈C,⊗〉 is closed if there exists
an operation on objects B −◦ C and an isomorphism of hom-sets C(A ⊗ B, C) ∼=
C(A, B −◦ C), naturally in A. Prove that this definition is equivalent to the following
definition in terms of a universal property:

Definition. A closed structure on a symmetric monoidal category 〈C,⊗〉 is given by an
operation on objects B −◦ C, and a family of morphisms εB,C : (B −◦ C) ⊗ B → C

called the application maps, such that for any f : A ⊗ B → C, there exists a unique
map f † : A → B −◦ C such that the following diagram commutes:

(B −◦ C) ⊗ B
εB,C // C

A ⊗ B

f

99rrrrrrrrrrr

f†⊗idB

OO

3

Using this latter definition, also prove that, in a given symmetric monoidal category,
any closed structure is uniquely determined up to isomorphism.

Problem 5. Recall the definition of the category Q ′. The objects are pairs V =
〈σ, ‖−‖V 〉, where σ = n1, . . . , ns is a signature, and ‖−‖V is a norm on Pσ , the
set of hermitian positive matrix tuples of type σ:

Pσ = {(A1, . . . , As) | Ai ∈ Cni×ni and Ai positive}

Here, a norm is a function ‖−‖ : Pσ → R+ satisfying the following properties:

• Strictness. ‖A‖ = 0 ⇒ A = 0.

• Linearity. ‖λA‖ = λ‖A‖, for λ ∈ R+.

• Triangle inequality. ‖A + B‖ 6 ‖A‖ + ‖B‖.

• Monotonicity. A v B ⇒ ‖A‖ 6 ‖B‖.

• Continuity. A = BB���iAi ⇒ ‖A‖ = BB���i‖Ai‖, where (Ai) is an increasing se-
quence.

A morphism is just a linear, norm-non-increasing function. More precisely, a morphism
from V = 〈σ, ‖−‖V 〉 to W = 〈τ, ‖−‖W 〉 is a linear function f : Pσ → Pτ such that
for all A ∈ Pσ , ‖f(A)‖W 6 ‖A‖V .

Prove that this category has finite products and coproducts. What are they? Is there
a way of making 〈Q′,⊕〉 into a traced monoidal category?

Problem 6. Let V = 〈σ, ‖−‖V 〉 and W = 〈τ, ‖−‖W 〉 be objects in the category
Q′ (see Problem 5). Recall that their tensor product is defined as V ⊗ W := 〈σ ⊗
τ, ‖−‖V ⊗W 〉, where

‖C‖V ⊗W = inf{
∑

i

‖Ai‖V ‖Bi‖W | C v
∑

i

Ai ⊗ Bi, where Ai ∈ V , Bi ∈ W}.

Prove the following theorems, which were stated in class. You may use other theorems
proved in class, such as the characterization of ‖−‖V ⊗W in terms of its unit region.

(a) For A ∈ V and B ∈ W , ‖A ⊗ B‖V ⊗W = ‖A‖V ⊗ ‖B‖W .

(b) ‖C‖V ⊗W = 0 ⇒ C = 0. (This is part of the proof that ‖−‖V ⊗W is indeed a
norm; the only part we did not give in class).

(c) Associativity: ‖C‖(V ⊗W )⊗U = ‖C‖V ⊗(W⊗U).

Problem 7. Let V = 〈2, ‖−‖tr〉, the space of hermitian positive 2×2-matrices with the
trace norm ‖A‖tr = tr A. Recall the definition of ‖−‖V ⊗V , see Problem 6. Calculate
the following quantities exactly, if possible, or else find upper and lower bounds:
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tr ⊗ tr .

4


