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Answersto Problem Set 6 (Revised)

Problem 4.19 We wantto prove the claim: for all naturalnumbersd andm, if d # 0, thenthereexists natural
numbersy, r suchthatm = d - ¢ + r andr < d. Fix somed # 0; wewill provetheclaim by inductiononm. For the
base case, noticethatif m = 0, thenwe cantake ¢ = r» = 0. Indeedwe have 0 = d - 0 + 0 by (M1) and(Al), and
also0 < d, becausel # 0. For theinduction step, assumehe claim holdsfor m. Sothereexist someg,r € w with
m =d-q+randr < d. Notethatthisimpliesr™ < d. We distinguishtwo casesCasel: r*™ < d. In this casewe
havem* =d-q + rt by (A2), andwe aredone.Case2: r* = d. Inthiscasewehavem®™ =d-q+d=d-q* by
(M2),som™ =d - q* + 0, andsince0 < d, we arealsodone.

Problem 4.20 Recallfrom p.83thatfor naturalnumbersn andk, onehask € n <= k € nt. By takingthe
negationsof thesestatementandusingtrichotomy onealsogetsthatn € k¥ < nt € k. We will usethis factin
thefollowing proof.

SupposeA is a nonemptysubsetof w and|JA = A. To prove A = w, we shov that A is inductive. Base case:
Since A is nonemptythereis somenaturalnumberk € A. Eitherk = 0, in which casewe have 0 € A asdesired.
Otherwise,0 € k € A, henced € |JA = A. Induction step: Supposer € A. Then,sinceA = |J A, we have
n € |J A, whichimpliesn € k for somek € A. SinceA is asetof naturalnumbers is a naturalnumber By the
above obsenation,we havent € k. Therearetwo cases:Casel: nt = k, thusnt € A andwe aredone. Case2:
nt € k € A, hencen™ € |J A = A, andagainwe aredone.Thus 4 is inductive, henced = w.

Problem 4.26 We proceedy inductiononn. Let
T={new|forall f:n" — w,ran f hasalargestelemen}.

We will shav thatT is inductive. Firstconsiderary f : 07 — w. Since0t = {0} isasingletonran f = {f(0)} has
exactly oneelementwhich is automaticallylargest. This takescareof the basecase.Now supposehatn € T. To
shawv thatn* € T, considerary f : nt+ — w. We have to shav thatran f hasalargestelement.Let g = fin™ be
therestrictionof f ton™; thusg : nt — w. By inductionhypothesiswe know thatran g hasa largestelementsay
k. Also,ran f = rangU {f(n™)}. We distinguishtwo casesCasel: k < f(n™). In thiscase,f(n*) is thelargest
elementbfran f. Case2: f(nT) < k. Inthiscasek is thelargestelementof ran f. In eithercaseran f hasalargest
elementandsincef wasarbitrary it followsthatn™ € T'. Thus,T is inductive, which provestheclaim.

Lemma. Ifn,k € wandn € k, thenthereexistsz € w withk = z + n.

Proof. By inductiononk. If £ = 0 thenn € k impliesn = 0, andwe cantake z = 0. For theinductionstep,suppose
the claim holdsfor k, andsupposen € k+. Theneithern = kt, in which caseonecantake z = 0. Or otherwise
n € kT, thusn € k, andwe canfind z with & = z + n by inductionhypothesis.Thenk* = z* + n, andwe are
done. O

Problem 4.37

(a) For fixedm,n € w, definethesetM = {k € m +n | k ¢ n}. We claim that M hasm elements. Let
¢ : m — M bethemapthatis definedby ¢(z) = = + n. We mustshaw that¢ is a well-definedmap,andthat
it is abijection. To seethat¢ is well-defined we mustcheckthatz +n € M for all z € m. Notethatif z € m,
thenz +n € m + n by TheoremdN. Also, z ¢ 0 andthusz + n ¢ 0 + n = n, againby Theorem4N. Thus,
x+n € M, and¢ is well-defined. Also, ¢ is one-to-oneby Corollary 4P, To seethat ¢ is onto M, take ary
k € M. Thenk & n, thusn € k by trichotomy By the Lemma,thereexistsz € w with & = = + n. Since
k =z +n € m + n, it followsthatz € m by Theorem4N, thusk = ¢(z). Thisshavsthat¢ is onto.

Noticethat M andn aredisjoint, by definition of M. We claim thatm + n = M U n. For theright-to-left
inclusion,noticethat M C m + n by definition. Also, 0 € m, thusn = n + 0 € n + m by Theorem4N and
Corollary 4R thusn C n + m by Corollary4M. Sowe have M Un C m + n. For theleft-to-rightinclusion,
take ary £ € m + n. In casek € n, we aredone,otherwisek ¢ n, which impliesk € M. This shavs
m+n CMUn.



Now we shav the claim of part(a). AssumeA, B aredisjoint of m, respectiely n, elementslet f : m — A
andg : n — B bebijections,andlet ¢ : m — M bethebijectionfrom above. Leth : M — A bethebijection
givenby h = f o ¢~ . Usingthefactthat M andn aredisjointandthat A and B aredisjoint, it follows easily
thathUg: M Un — AU B isabijection.Fromm +n = M U n, it followsthatA U B hasm + n elements.

(b) Wefirstclaimthatm x n hasm -n elementsDefiney : m x n = m -n by¢(z,y) = z-n +y. Weclaimthat
1 is well-defined andthatit is a bijection. For well-definednessye mustcheckthaty(z,y) € m - n whenever
x € m andy € n. Butz € m impliesz™ € m, andthusz™ -n € m-n. Thelaststepfollowsby Theorem4N, if
n #0,andby (M1)if n = 0. Nowy € nimpliesz-n+y € z-n+n =z -n € m-n. Thusy(z,y) € m-n,
andvy is well-defined.

To shawv that) is one-to-oneassumethat(z,y) = (2',y') for somez,z’ € m andy,y’ € n. Then
z-n+y =z'-n+y'. Wemustshav z = =’ andy = y'. First,assuméfor thesale of deriving acontradiction)
thatz # z'. Theneitherz € =’ orz’ € x by trichotomy;we mayassumevithoutlossof generalitythatz € z’.

It followsthatz™ € 2/, thusz™ - n € 2’ -n. Thisimpliesz-n+yez-n+n=at-n€2'-n€x’'-n+7v,

contradictinge - n +y = 2’ - n + y'. Thus,it followsthatz = z’. Now fromz - n + y = z - n + y' we canget
y = y' by cancellationCor. 4P).

Next, we show thaty is ontom - n. If n = 0, thenthisis trivial, sincem - n = 0 in this case.Thus,assume
n # 0 andtakeary k € m - n. By Problem4.19,thereexist numbers< andy suchthatk = x - n +y andy € n.
Wehavez - n € k € m - n, andthusz € m by TheoremdN. It followsthatk = ¢ (z,y). Thusy is abijection.

Finally, we show the claim of part(b). AssumeA hasm elementsaand B hasn elementslLet f : m —+ A and
g : n — B bebijections.Defineh : m x n - A x B by h({z,y)) = (f(z), g(y)). Onecheckseasilythath is
abijection. Thenh o 1y~ is abijectionm -n — A x B, which provesthat A x B hasm - n elements.

Hereis analternatve, easiemproof of Problem4.37which usesinduction.

(a) We shaw this claim by inductiononn. If n = 0,thenB = (), andhencedA U B = A hasm = m + n elements.
For theinductionstep,assumehe claim holdsfor n. Supposed hasm elementsB hasnt elementsand A
and B aredisjoint. Thenthereexists someone-to-oneandontofunction f : n* — B. Let B' = f[n]; then
clearly B = B' U f(n) andthis unionis disjoint. Moreover, the function f|,, : n — B is one-to-oneandonto
B', sothat B’ hasn elementsSinceB’ is still disjointfrom A, thesetA U B’ hasm + n elementsy induction
hypothesisThus,thereis someone-to-oneandontofunctiong : m+n — AUB'. Leth = gU{(m +n, f(n)),
thenh is a one-to-ondunctionof m + n* onto A U B, asdesired.

(b) Again,we shaw theclaimby inductiononn. If n = 0, thenB = ), andhenced x B = (), whichhas0 =m -n
elements. For the induction step,assumethe claim holdsfor n. Supposed hasm elementsand B hasnt
elements.Thenthereexists someone-to-oneandontofunction f : n* — B. As before,let B’ = f[n]; then
againB = B' U f(n), thisunionis disjoint,and B’ hasn elementsBy inductionhypothesisA x B’ hasm - n
elementsSinceA hasm elementsandthesetA is in one-to-onecorrespondenceith thesetA x {f(n)}, the
lattersetalsohasm elementsOnealsohasA x B = A x B'U A x {f(n)} (by Problem3.2(a)),moreover, the
latterunionis disjoint,andsoby (a), A x B hasm - n +m = m - nT elementsasdesired.

Problem 5.1 through 5.3 We mustcheckwhethereachof thefollowing functionsfromw x w tow x w is compatible
with therelation~, whichwasdefinedby (m,n) ~ (m/,n') iff m +n' =m' + n.

The function f is not compatible: for instance(0,0) ~ (1,1), but (0 + 0,0) # (1 + 1,1). The function g is
trivially compatible becauseor all m, m', onehas{m, m) ~ (m',m'). Thefunction h is alsocompatible because
(m,n) ~ (m',n') impliesm +n' = m' + nimpliesn + m' = n' + m implies{n,m) ~ (n',m').



(z,9)] -z (—[(w, 2)])
[(z,y)] -z [(z, w)]
[(zz + yw, zw + yz)],
(—[z,9)]) -z [(w, 2)]
[(y, )] [(w z)|
[(yw + z2,yz + zw)]
[(zz + yw, 2w + yz)]
—([({z,9)] -z [(w, 2)])
—([(zw +yz, 22 + yw)])
[(zz + yw, 2w + yz)].

?



