MATH 582, INTRODUCTION TO SET THEORY, WINTER 1999

Answers to Problem Set 9

Problem 1 Let \mathscr{A} be the set of all chains of a given poset $\langle P, \leq \rangle$. Notice that the elements of \mathscr{A} are chains in P, but we can also speak of chains in \mathscr{A} (in the sense of Zorn's Lemma). To avoid confusion, we will speak of P-chains $C \subseteq P$, and of \mathscr{A} -chains $\mathscr{C} \subseteq \mathscr{A}$.

To apply Zorn's Lemma, we must show that \mathscr{A} is closed under unions of \mathscr{A} -chains. So let $\mathscr{C} \subseteq \mathscr{A}$ be an \mathscr{A} -chain. We claim that $\bigcup \mathscr{C} \in \mathscr{A}$, i.e., that $\bigcup \mathscr{C}$ is a *P*-chain. Clearly, $\bigcup \mathscr{C} \subseteq P$, so we must show that for all $x, y \in \bigcup \mathscr{C}$, either $x \leq y$ or $y \leq x$. Since $x, y \in \bigcup \mathscr{C}$, we must have $x \in C$ and $y \in D$ for some $C, D \in \mathscr{C}$. Since \mathscr{C} is an \mathscr{A} -chain, either $C \subseteq D$ or $D \subseteq C$. Assume without loss of generality that $C \subseteq D$. Then $x, y \in D$. But since $D \in \mathscr{A}$ is a *P*-chain, we have $x \leq y$ or $y \leq x$, as desired. Thus, $\bigcup \mathscr{C}$ is a *P*-chain, and \mathscr{A} is closed under unions of \mathscr{A} -chains. It follows by Zorn's Lemma that \mathscr{A} has a maximal element, i.e., there is a maximal *P*-chain.

Problem 2 Suppose $\langle P, \leq \rangle$ is a poset such that any *P*-chain has an upper bound in *P*. By Problem 1, there exists a maximal chain $C \subseteq P$. By assumption, *C* has an upper bound $x \in P$, i.e., there is $x \in P$ such that for all $y \in C$, $y \leq x$. We claim that x is a maximal element in *P*. For otherwise, there would exist $z \in P$ such that x < z. But then $C \cup \{z\}$ would be a *P*-chain which strictly contains *C*, contradicting the maximality of *C*.

Problem 3 The original hint given with this problem was wrong. The problem is that the given set

 $\mathscr{A} = \{ R \subseteq A \times A \mid R \text{ is a well-order on some subset of } A \}$

is not closed under unions of chains, because a union of a chain of well-orders is not necessarily a well-order. For instance, the usual order < on the integers \mathbb{Z} is the union of a chain of well-orders on subsets of \mathbb{Z} , namely the subsets of the form $\{x \in \mathbb{Z} \mid x \ge a\}$ for $a \in \mathbb{Z}$.

So we need to modify the argument somewhat. Instead of considering the inclusion ordering on \mathcal{A} , we will consider the more restrictive ordering of "being an initial piece". We will then use the poset version of Zorn's Lemma (from Problem 2).

For a relation R, recall that the *field* of R, fld R, was defined to be dom $R \cup \operatorname{ran} R$. Thus, any $R \in \mathscr{A}$ is a well-order on fld R. If $R, Q \in \mathscr{A}$, we say that R is an *initial piece* of Q, in symbols $R \leq_{ip} Q$, if $R \subseteq Q$ and for all $x, y \in A$,

$$yQx$$
 and $x \in \operatorname{fld} R$ implies yRx . (1)

It is easily seen that \leq_{ip} is reflexive, anti-symmetric, and transitive, and thus \leq_{ip} defines a partial order on \mathscr{A} . We claim that every \leq_{ip} -chain has an upper bound in \mathscr{A} . Let \mathscr{C} be any such chain. Define $\overline{R} = \bigcup \mathscr{C}$. Notice that fld $\overline{R} = \bigcup \{ \text{fld } R \mid R \in \mathscr{C} \} \subseteq A$. We claim that \overline{R} is a well-order on fld \overline{R} , and that it is an upper bound for \mathscr{C} with respect to \leq_{ip} .

Irreflexivity: Consider $x \in \text{fld} \bar{R}$. Since any $R \in \mathscr{C}$ is irreflexive, we have $\neg xRx$, and hence $\neg x\bar{R}x$. *Transitivity:* Consider $x, y, z \in \text{fld} \bar{R}$ such that $x\bar{R}y$ and $y\bar{R}z$. Then xRy for some $R \in \mathscr{C}$, and yQz for some $Q \in \mathscr{C}$. Since \mathscr{C} is a \leq_{ip} -chain, either $R \subseteq Q$ or $Q \subseteq R$; assume without loss of generality that $R \subseteq Q$. Then xQyQz, hence xQz by transitivity of Q, and hence $x\bar{R}z$ as desired. *Connectedness:* Consider $x, y \in \text{fld} \bar{R}$. Then $x \in \text{fld} R$ for some $R \in \mathscr{C}$, and $y \in \text{fld} Q$ for some $Q \in \mathscr{C}$. As before, we can assume without loss of generality that $R \subseteq Q$. Then $x, y \in \text{fld} Q$, and hence xQy or x = y or yQx by connectedness of Q. But since $Q \subseteq \bar{R}$, this implies $x\bar{R}y$ or x = y or $y\bar{R}x$.

Well-order: Consider any non-empty subset $B \subseteq \operatorname{fld} \overline{R}$. We claim that B has a least element with respect to \overline{R} . First, since B is non-empty, there must be some $R \in \mathscr{C}$ such that $B \cap \operatorname{fld} R$ is non-empty. Since R is a well-order, there exists a least element $x_0 \in B \cap \operatorname{fld} R$, with respect to R. We claim that x_0 is a least element of B with respect to \overline{R} . Assume to the contrary that there was some $y \in B$ with $y\overline{R}x_0$. Then yQx_0 for some $Q \in \mathscr{C}$. Since we cannot have yRx_0 (by leastness of x_0), it follows that $Q \not\subseteq R$, and thus $Q \not\leq_{ip} R$. But since \mathscr{C} is a chain, it must then be the case that $R \leq_{ip} Q$. But $x_0 \in \operatorname{fld} R$ and yQx_0 , which implies yRx_0 by (1), contradicting the leastness of x_0 . Hence, $y\overline{R}x_0$ is impossible, and x_0 is least in B with respect to \overline{R} .

Thus, \overline{R} is a well-order, and since $\overline{R} = \bigcup \mathscr{C} \subseteq A \times A$, it follows that $\overline{R} \in \mathscr{A}$. Next, we show that \overline{R} is an upper bound for \mathscr{C} . For any $R \in \mathscr{C}$, we must show $R \leq_{ip} \overline{R}$. First, since $\overline{R} = \bigcup \mathscr{C}$, it is clear that $R \subseteq \overline{R}$. To show (1),

consider any $x, y \in A$ such that $y\bar{R}x$ and $x \in \text{fld }R$. Then yQx for some $Q \in \mathscr{C}$. Since \mathscr{C} is a chain, either $R \leq_{ip} Q$ or $Q \leq_{ip} R$. In the first case, yRx by (1), applied to R and Q. In the second case, $Q \subseteq R$, and thus also yRx. This proves $R \leq_{ip} \bar{R}$.

We have shown that any chain in $\langle \mathscr{A}, \leq_{ip} \rangle$ has an upper bound. Now we can apply Zorn's Lemma for posets (Problem 2) to conclude that \mathscr{A} has a maximal element R with respect to \leq_{ip} . We claim that fld R = A. For suppose otherwise. Then there is some $x \in A$ such that $x \notin \text{fld } R$. Consider $R' = R \cup (\text{fld } R \times \{x\})$. It is easily seen that R' is a well-order and that $R <_{ip} R'$, contradicting the maximality of R. Hence, fld R = A, and thus R is a well-order on A. This proves the well-ordering theorem.

Problem 4

- (a) Let A be the set of convex subsets of X. We claim that A is closed under unions of chains. So let C be a chain of convex subsets of X, and let Y = U C. We have to show that Y is convex. So take u, v ∈ Y. By definition of Y, we have u ∈ A and v ∈ B for some A, B ∈ C. Since C is a chain, either A ⊆ B or B ⊆ A. Let us say, without loss of generality, that A ⊆ B. Then u, v ∈ B, and since B is convex, the line segment connecting u and v is contained in B. But B ⊆ Y, and thus the line segment connecting u and v is also contained in Y. Since u, v ∈ Y were arbitrary, this shows that Y = U C is convex. Thus, C is closed under unions of chains. It follows by Zorn's Lemma that there is a maximal M ∈ C, i.e. a maximal convex subset of X.
- (b) Here are some examples of maximal convex subsets of the given set X. As you can see, such sets are not at all unique.

Problem 5 Before we prove this, let us observe that any non-empty finite chain $\{B_1, \ldots, B_n\}$ has a maximal element. This is proved by induction on n: In case n = 1, this is clear. For the induction step, assume the claim holds for n and consider $\mathscr{C} = \{B_1, \ldots, B_{n+1}\}$. By induction hypothesis, $\{B_1, \ldots, B_n\}$ has a maximal element, say, B_i . Then, since \mathscr{C} is a chain, either $B_{n+1} \subseteq B_i$ or $B_i \subseteq B_{n+1}$. In the first case, B_i is maximal in \mathscr{C} , and in the second case, B_{n+1} is maximal in \mathscr{C} .

Now on to Problem 5. It suffices to show that \mathscr{A} is closed under unions of chains. So let $\mathscr{C} \subseteq \mathscr{A}$ be an arbitrary chain. Let $B = \bigcup \mathscr{C}$. We claim that $B \in \mathscr{A}$. By assumption, it suffices to show that every finite subset of B is a member of \mathscr{A} . So let $F = \{x_1, \ldots, x_n\} \subseteq B$ be an arbitrary such finite subset. Since $x_1, \ldots, x_n \in \bigcup \mathscr{C}$, there must be sets $B_1, \ldots, B_n \in \mathscr{C}$ such that $x_i \in B_i$ for $i = 1 \ldots n$. Since \mathscr{C} is a chain, the set $\{B_1, \ldots, B_n\} \subseteq \mathscr{C}$ is a finite chain, and thus it has a maximal element B_i by our above observation. Then $x_1, \ldots, x_n \in B_i$, and thus $F \subseteq B_i$. However, $B_i \in \mathscr{A}$, and thus also $F \in \mathscr{A}$, by assumption on \mathscr{A} . Since F was an arbitrary finite subset of B, it follows that $B \in \mathscr{A}$, and thus \mathscr{A} is closed under unions of chains. By Zorn's Lemma, \mathscr{A} has a maximal element.