MATH 582,INTRODUCTION TO SET THEORY, WINTER 1999
Well-Orders and Ordinals

1 Transfinite Induction and Recursion

Definition. A linearlyorderedset(W, <) is well-ordered if everynon-emptysub-
setA C W hasaleastelement.

Whent € W, letuswrite segt = {x € W | z < t}.

Theorem 1 (Transfinite Induction Principle). Let (W, <) beawell-ordered set.
Suppose B C W isa subset such that for all t € W,

segt C B =1t€ B.

ThenB =W.

Proof. Let A = W — B. Supposed is non-empty Then A hasa leastelementt.
Butthismeanghatforall z € ¢,z ¢ A, thussegt C W — A = B. By hypothesis,
thisimpliest € B, contradictingt € A. Thus,A is emptyafterall,andB = W.OO

Theway theinductionprincipleis usuallyusedis to shawv thatall elementof W
have a certainproperty OneformsthesetB of all thoseelementf W thathave
theproperty Theinductionstepis to shav thatif all z < ¢ havetheproperty then
t hasthe propertyaswell. Unlike with ordinaryinduction,thereis no separate
basecase.

Theorem 2 (Transfinite Recursion Theorem Schema). For any formula-y(z, ),
the following is a theorem: Assume (W, <) is a well-ordering. Assume that for

any set x there is a unique set y such that v(z,y). Then there exists a unique
function F" with domain W such that for all t € W

V(Fsegt, F(t)).
Proof. SeeEndertonp.180f. Theproof useshereplacemenaxiom. d

Moreinformally, thetransfiniterecursiortheorentells usthatto defineafunction
onawell-orderedset(W, <), it sufiicesto give adefinitionof eachfunctionvalue
F(¢) in termsof all the previousfunctionvaluesF'(z) wherez < t.



2 The Axiom of Regularity

Axiom of Regularity Every non-emptyset A hasa memberm € A suchthat
mnNA=0.

In otherwords,the regularity axiomsassertshatevery non-emptysethasa mem-
berthatis minimal with respecto themembershipelation.Noticethatmn A =
if andonlyif, forallz € A, x ¢ m.

Theregularity axiomimpliesthatthe universeof setsis well-founded, i.e., thereis
noinfinite descendinghainof sets.In otherwords,thereis no sequencés,, ), c.
of setssuchthat

... € 83 €89 € 81 € Sp.

Thisis statedmorepreciselyin thefollowing proposition:

Proposition 3. If regularity holds, then thereis no function s with domain w such
that for all n € w, sp4+1 € sn.

Proof. Assumeto the contrarythattherewassuchafunctions. Let A =rans =
{sn | n € w}. ThenA is non-emptysoby regularity, theremustbesomem € A
with m N A = §. But we musthave m = {yn for somen € w, andthus
sn+1 € mN A, acontradiction. O

Remark. If we assumethe axiom of choice,then the corverseis alsotrue: If

regularity fails, thenthereexists aninfinite descendinghain of sets. Because,
if regularity fails, thenthereis somenon-emptyset A suchthatfor all m € A,

mnNA# 0. Let R C A x A betherelationdefinedby mRz iff z € m N A.

By assumptiondom R = A. Soby the axiom of choice,thereexists a function

F : A — Awith F C R. Thelatterinclusionimpliesthatm RF (m) holdsfor all

m € A, andthus,that F(m) € m for all m € A, by definitionof R. SinceA is

non-emptywe canpick anelementg € A. By ordinaryrecursionwe candefine
afunctions : w — A suchthat

S0 = o,

Spn+1 = F(Sn)
It follows thats, 1 = F(s,) € s, foralln € w, i.e., (sp)necw IS aninfinite
descendinghain.

Corollary 4. In the presence of regularity, there is no set z with x € z. Also,
there are no sets a, b with a € b and b € a. More generally, there are no sets
ai,as,...,an SUChthata, € ax € ... € a, € a;.



Proof. Eachsuchsituationwould give riseto aninfinite descendinghainof sets,
contradictingProposition3. O

Theaxiomof regularity stateghatthereis alwaysaminimal setin eachnon-empty
set.It follows easilythatthereis alwaysa minimal setin eachnon-emptyclass:

Proposition 5 (Minimality Principle for Sets). Suppose ¢(z) is a property of
sets that holds of at least one set. Then there is a minimal m such that ¢(m)
holds. In other words, there is a set m such that ¢(m) and such that for all
xz € m, ~d(z).

Proof. By assumptionthereis someseta with ¢(a). Let C be a transitve set
containinga (sucha setexistsby Problem7.7). Let A = {x € C' | ¢(z)}. Then
a € A, thus A is anon-emptysetandwe canapply theregularity axiomto A to
obtainsomem € A with m N A = (). Thenby definitionof A, we have ¢(m).
Also, m is minimal with this property becausdor all z € m, wehavez € C but
x ¢ A, fromwhichit followsthat—¢(x). O

From our experiencewith the naturalnumbersand with well-orders,we have
learnedthatinductionprinciplesandminimality principlesarecloselyrelated.So
we would expectthat our minimality principle for setsgivesrise to somesort of
inductionprinciplefor sets.This is indeedthe case asthefollowing proposition
shows:

Proposition 6 (SetInduction Principle). Suppose ¢ () isa property of setssuch
that for all setsy,

(Vz € y.¢(z)) = 6(y).
Then the property ¢(x) holds of all sets.

Proof. Supposeto the contrary that¢(x) doesnothold for all sets.Then,by the
minimality principle, thereis a minimal m for which —¢(m). But this meanshat
for all z € m, ¢(zx), whichimplies¢(m) by assumptionThis is a contradiction,
andthus¢(z) holdsfor all . O

From now on, we will assumehe axiomsof replacemenand regularity unless
otherwisestated.



3 Ordinals

Definition. An ordinal number, or simply ordinal, is atransitive setof transitve
sets.

Proposition 7 (Trichotomy for Ordinals). If o and 3 are ordinals, then exactly
one of the possibilitiesa € g or aa = g or 8 € a holds.

Proof. First, noticethatby Corollary 4, at mostoneof thethreepossibilitiescan
hold. Let uswrite trich(«a, 3) for thestatement

a€efBf V a=p8 V BEa.

It sufficesthatshaw thatfor all ordinalsa: andg, trich(a, 8) holds.Supposehis

wasnotthecase.Thenby the minimality principle,we canfind aminimal a such
thatfor someg, trich(a, 3) fails. Usingthe minimality principle again,we can
find aminimal 8 suchthatfor thechosen, trich(q, 3) fails. With this choiceof

«a andf, we have thatfor all o' € a, trich(a/, 8) (by minimality of «), andfor

all 8" € g, trich(«, 8) (by minimality of 8). We will derive a contradictionby

shaowing thattrich(a, 8) holdsafterall. If « = 3, thenwe aredone.Otherwise,
therearetwo cases:

Casel: Thereexistsa' € a suchthata’ ¢ 3. By trich(a/, 8), wehave 8 € ¢/,
andthusg € a by transitiity of a. Case2: Thereexists 8’ € 3 suchthatg’ ¢ a.
By trich(a, 8'), wehave a € 3, andthusa € 8 by transitvity of 3.

In ary casewe have shavn thattrichotomyholdsfor « andg, whichis thedesired
contradiction. O

Corollary 8. For ordinalsa and 3, onehasa € gifandonly if o C 3.

Proof. If a € 3, thena C f becausés is transitve. Moreover, the inclusion
is strict sincea # [ by regularity. This shaws the left-to-right implication. For
the corverse,assumdhata C 3. Theng # «. Also, 8 € « is impossible,or
elsewewould have g € 3. Thus,by trichotomy, the only remainingpossibilityis
a € f. O

Lemma9. If e isan ordinal and z € «, then z isan ordinal.

Proof. Letz € «. Thenz is transitve sincea is a setof transitve sets.Also, for
ary y € z, onehasy € «a sincea is transitve; hencey is transitveaswell. O



Theorem 10 (Burali-F orti). The class of ordinalsis not a set.

Proof. SupposeherewasasetO suchthata € O iff a isanordinal. ThenO is
transitve by Lemma9. Also, the elementof O aretransitve, andthusO is an
ordinalitself, whichimpliesO € O, acontradiction. O

Remark. Any non-emptyclassof ordinalshasaleastelement.

Proof. By the minimality principle, ary non-emptyclassof ordinalshasa mini-
mal element.By trichotomy; sucha minimal elements least. d

Proposition11. « is an ordinal if and only if « is a transitive set that is well-
ordered by €.

Proof. In theleft-to-right direction,we alreadyknow thatif « is anordinal,then
it is transitive; it remainsto show thatit is well-orderedby €. Transitivity: If = €

y € z € o, thenx € z sincez is atransitve set. Trichotomy: By Lemma9 and
Proposition7. Thus, € definesa linearorderon «.. Well-orderedness: Consider
ary non-emptysubsetd C a. Thenby regularity, thereexistssomez € A with

z N A = 0. Thisimpliesthatfor ally € A, y ¢ z, andthusz € y by trichotomy.

Thus,z is minimalin A.

For theright-to-leftdirection,assumehata is atransitive setthatis well-ordered
by €. We mustshaw thatary x € « is transitve. Soconsiderz € y € x. Sincea
is transitve, we have z,y, z € «, andthus,by transitvity of the e-relationon «
(whichis partof thedefinitionof awell-order),z € . O

Remark. Someauthors,suchas Enderton,defineordinalswithout assuminghe
regularity axiom. In this case pnemaytake Propositionl 1 asthedefinitionof the
ordinals.

Thefollowing lemmaprovidesuswith someexamplesof ordinals:
Lemmal2. (1) @isanordinal.
(2) If aisanordinal, thenat = a U {a} isan ordinal.

(3) If D isaset of ordinals, then | J D isan ordinal.

Proof. Eachcaseis trivial to checkdirectly from the definitionof anordinalasa
transitive setof transitive sets. O



In particular it follows that eachnaturalnumbern is anordinal. Thesearethe
only finite ordinals. The next ordinal afterthatis w, the setof naturalnumbers.
Next, onehaswt, wtt, andsoon. Theunionof theseordinalsis denotedasw - 2.
Hereis alist of thefirst coupleof ordinals,in increasingorder:

0,1,2,...,w,wh,wtt, . w-2,(w-2)T,...w-3,...,w-4,...
Theunionof all the ordinalsin this list is denotedv - w or w?. Onecancontinue
in asimilarfashionto w?, w*, andsoforth. Takingtheunionof all theseordinals,
onegetsw®, andonecancontinueto w*”, andsoon. We will definetheseoper
ationson ordinalsmorepreciselylateron, oncewe know alittle moreabouttheir
properties.

We have shavn thateachordinalis well-orderedby the e-relation. Our next goall
isto proveacorverse:eachwell-orderedsetis isomorphicto someordinal. Recall
thatanisomorphism betweerorderedsets(4, < 4) and(B, <) is aone-to-one
andonto function f : A — B suchthatz <4 y iff f(x) < f(y), for all
x,y € A

Definition. The €-image (pronouncedepsilon-imagepf awell-orderedset{W,
<) is definedasfollows: Let E bethe uniquefunctionwith domainW suchthat
forallt € W,

E(t) =ran(E[segt) = {E(z) | z < t}.
A uniquesuchfunction exists by the transfiniterecursiontheorem.The e-image
of (W, <) isdefinedtoberan E = {E(t) |t € W}.

Lemma 13. Let o be the €-image of a well-ordered set (I, <). Then the follow-
ing hold:

(1) Forall s,t € W,s < tiff E(s) € E(t).
(2) E maps W one-to-one onto a.

(3) aisanordinal.

Proof. (1) Theleft-to-rightimplication follows by definitionof E(t) = {E(s) |
s < t}. Theright-to-leftimplicationfollows by trichotomy:if E(s) € E(t), then
t < s isimpossible.(2) It is clearthat E is onto, sincea wasdefinedto bethe
rangeof E. Thefactthat E is one-to-onefollows from (1), becausef s # t,
thens < tort < s, andthusE(s) € E(t) or E(t) € E(s). In eithercase,
E(s) # E(t). (3) aistransitve, becauséf = € y € a, theny = E(t) for some



t € W,andthusz € E(t) = {E(s) | s < t}. Hencex = E(s) for somes € W,
thusz € a. Also, (1) and(2) shav that{a, €) is isomorphicto (W, <), andthus
a is well-orderedby €. It follows from Propositionl1thata is anordinal. O

Corollary 14. Any well-ordered set (W, <) is isomorphic to some ordinal «.
Namely, one can take « to be the €-image of (W, <). O

Is it true that every well-orderedsetis isomorphicto a unique ordinal? This is
indeedtrue,becaus®f thefollowing fact:

Lemma 15. Two ordinals are isomorphic if and only if they are equal. The only
isomor phisms between ordinals are identity maps.

Proof. Supposex andg areordinalsand f : @ — (3 is anisomorphism We first
claimthat f(t) = t for all t € a. We prove this by transfiniteinduction. Sotake
t € a andsupposeasaninductionhypothesisthat f(z) = « for all x € ¢. We
claimthat f(t) = {f(z) | z € t}. Theright-to-leftinclusionholdsbecause: € ¢
implies f(z) € f(t), sincef is anisomorphism.For the left-to-right inclusion,
takey € f(t). Theny € 3, sinceg is transitve. Thus,y = f(z) for somez € a,
sincef isonto.Thus,f(z) € f(t), andhencer € ¢ sincef is anisomorphismlt
followsthaty € {f(x) | z € t}. Now we have thefollowing:

f@®) = {f(z)|z et} bywhatwehaejustshovn
= {z|zet} by inductionhypothesis
= 1.

This finishestheinductionstep. It followsthat f(¢) = ¢ for all ¢ € «. But now
it follows thata = g sincef is onto 8. Thus, f is the identity mapfrom « to
itself. O

Corollary 16. (1) Every well-ordered set (W, <) isisomorphic to a unique or-
dinal a.

(2) Two well-ordered sets are isomor phic iff the have the same €-image.

(3) Each two well-ordered sets are either isomorphic, or one is isomorphic to
an initial segment of the other.

(4) Everyordinal isequal to its own e-image.



Proof. (1) We know from Corollary 14 thatevery well-orderedset(W, <) is iso-
morphicto someordinal «. For uniquenessassumethat (W, <) is isomorphic
to two ordinalsa and 8. Thena is alsoisomorphicto 8, andthusa = g by
Lemmalb. (2) “=": If two well-orderedsetsareisomorphicthentheir e-images
mustalsobeisomorphic,andthusequalby Lemmal5. “<": If two well-ordered
setshave equal e-images,thenthey mustbe isomorphic,sinceeachof themis
isomorphicto its e-image. (3) If W andV arewell-orderedsets,thenthey are
isomorphicto uniquerespectie ordinalsa andg. If a = 3, thenW andV are
isomorphicby (2). Otherwise by trichotomyand Corollary 8, eithera C 3 or
B C a. In thefirst case W is isomorphicto aninitial sgmentof g (namely o),
andthusto aninitial sggmentof V. The secondcaseis symmetric. (4) Every
ordinal « is isomorphicto its e-imageby Corollary 14. But sinceboth « andits
e-imagearebothordinals they mustthenbeequalby Lemmals. O



