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Well-Orders and Ordinals

1 Transfinite Induction and Recursion

Definition. A linearlyorderedset
���������

is well-ordered if everynon-emptysub-
set 	�
 � hasa leastelement.

When ��
 � , let uswrite ��������������
 ��� � � ��� .
Theorem1 (Transfinite Induction Principle). Let

���������
be a well-ordered set.

Suppose � 
 � is a subset such that for all �!
 � ,

�"���#��
$�&%'�!
(�*)
Then �+� � .

Proof. Let 	,� �.- � . Suppose	 is non-empty. Then 	 hasa leastelement� .
But thismeansthatfor all �/
0� , ��1
2	 , thus �"���#��
 �3- 	4�5� . By hypothesis,
this implies �!
2� , contradicting��
2	 . Thus, 	 is emptyafterall, and �+� � . 6
Theway theinductionprincipleis usuallyusedis to show thatall elementsof

�
havea certainproperty. Oneformstheset � of all thoseelementsof

�
thathave

theproperty. Theinductionstepis to show thatif all � � � havetheproperty, then
� hasthe propertyaswell. Unlike with ordinary induction, thereis no separate
basecase.

Theorem2 (Transfinite RecursionTheoremSchema). For any formula 798:� ��;=< ,
the following is a theorem: Assume

�>�������
is a well-ordering. Assume that for

any set � there is a unique set
;

such that 7�8?� �";@< . Then there exists a unique
function A with domain

�
such that for all �!
 �
798�ACB��"���#� � AD8:� <"< )

Proof. SeeEnderton,p.180ff. Theproof usesthereplacementaxiom. 6
Moreinformally, thetransfiniterecursiontheoremtellsusthatto defineafunction
onawell-orderedset

���������
, it sufficesto giveadefinitionof eachfunctionvalueAD8?� < in termsof all thepreviousfunctionvaluesAD8?� < where� � � .
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2 The Axiom of Regularity

Axiom of Regularity Every non-emptyset 	 hasa memberE.
F	 suchthat
E&G(	4�IH .
In otherwords,theregularityaxiomsassertsthateverynon-emptysethasamem-
berthatis minimal with respectto themembershiprelation.Noticethat EJG!	I�4H
if andonly if, for all �/
2	 , ��1
2E .

Theregularityaxiomimpliesthattheuniverseof setsis well-founded, i.e., thereis
no infinite descendingchainof sets.In otherwords,thereis nosequence8>KML < LONQP
of setssuchthat )�)�)@
�K�RS
/KMTS
�KVUS
2K�WX)
This is statedmorepreciselyin thefollowing proposition:

Proposition3. If regularity holds, then there is no function K with domain Y such
that for all ZJ
*Y , K LX[ U\
�K L .
Proof. Assumeto thecontrarythattherewassucha function K . Let 	I�5]_^X`aKb��VK L � ZJ
(Yc� . Then 	 is non-empty, soby regularity, theremustbesomeEd
�	
with EeGf	g�gH . But we must have Eh�.�jikZ for some Z3
lY , and thusK LQ[ Ub
2E&G(	 , acontradiction. 6
Remark. If we assumethe axiom of choice, then the converseis also true: If
regularity fails, then thereexists an infinite descendingchainof sets. Because,
if regularity fails, thenthereis somenon-emptyset 	 suchthat for all Em
n	 ,EoGp	q1�oH . Let rs
l	utJ	 be the relationdefinedby E2rb� if f �F
nEoGC	 .
By assumption,v=wyxfr �z	 . Soby theaxiom of choice,thereexistsa functionA&{X	4|}	 with A&
fr . Thelatterinclusionimpliesthat E(rSAD8:E < holdsfor all
E~
�	 , andthus,that AD8?E < 
JE for all E}
�	 , by definitionof r . Since 	 is
non-empty, wecanpick anelement��W�
�	 . By ordinaryrecursion,wecandefine
a function K�{QY�|q	 suchthat

K�W � ��W �K LQ[ U�� AD8>K L < )
It follows that KMLQ[ U �eAD8�KML < 
�KML for all Zz
,Y , i.e., 8>K�L < LONQP is an infinite
descendingchain.

Corollary 4. In the presence of regularity, there is no set � with ��
4� . Also,
there are no sets � �_� with �n
 � and

� 
4� . More generally, there are no sets�@U � ��T � )�)�) � � L such that �@Ub
���TS
J)�)�)@
�� L 
2�@U .
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Proof. Eachsuchsituationwouldgiveriseto aninfinite descendingchainof sets,
contradictingProposition3. 6
Theaxiomof regularitystatesthatthereis alwaysaminimalsetin eachnon-empty
set.It followseasilythatthereis alwaysa minimalsetin eachnon-emptyclass:

Proposition5 (Minimality Principle for Sets). Suppose ��8?� < is a property of
sets that holds of at least one set. Then there is a minimal E such that ��8:E <
holds. In other words, there is a set E such that ��8:E < and such that for all
�/
(E , ����8:� < .
Proof. By assumption,thereis someset � with ��8�� < . Let � be a transitive set
containing� (sucha setexistsby Problem7.7). Let 	��z���J
J� � ��8?� < � . Then�/
�	 , thus 	 is a non-emptysetandwe canapply theregularity axiomto 	 to
obtainsomeE�
�	 with E GC	u�lH . Thenby definitionof 	 , we have ��8:E < .
Also, E is minimal with this property, becausefor all �/
2E , we have �/
/� but
��1
2	 , from which it follows that ����8:� < . 6
From our experiencewith the naturalnumbersand with well-orders,we have
learnedthatinductionprinciplesandminimality principlesarecloselyrelated.So
we would expectthatour minimality principle for setsgivesrise to somesortof
inductionprinciplefor sets.This is indeedthecase,asthefollowing proposition
shows:

Proposition6 (SetInduction Principle). Suppose ��8:� < is a property of sets such
that for all sets

;
, 8�����
 ; )���8?� <"< %~��8 ;@< )

Then the property ��8:� < holds of all sets.

Proof. Suppose,to thecontrary, that ��8:� < doesnot hold for all sets.Then,by the
minimality principle,thereis aminimal E for which ����8:E < . But this meansthat
for all �p
CE , ��8?� < , which implies ��8?E < by assumption.This is a contradiction,
andthus ��8?� < holdsfor all � . 6
From now on, we will assumethe axiomsof replacementandregularity unless
otherwisestated.
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3 Ordinals

Definition. An ordinal number, or simplyordinal, is a transitivesetof transitive
sets.

Proposition7 (Trichotomy for Ordinals). If � and � are ordinals, then exactly
one of the possibilities ��
2� or ���n� or �J
�� holds.

Proof. First, noticethatby Corollary4, at mostoneof thethreepossibilitiescan
hold. Let uswrite ���V���V�!8�� � � < for thestatement

��
(�m���p�F�m����
2��)
It sufficesthatshow thatfor all ordinals� and � , ���j�:�V��8:� � � < holds.Supposethis
wasnot thecase.Thenby theminimality principle,wecanfind aminimal � such
that for some� , ���j�:�V�!8:� � � < fails. Usingtheminimality principleagain,we can
find aminimal � suchthatfor thechosen� , ���j���M��8�� � � < fails. With thischoiceof� and � , we have that for all ����
�� , ���j�:�V��8:��� � � < (by minimality of � ), andfor
all ����
p� , ���j�:�V��8:� � ��� < (by minimality of � ). We will derive a contradictionby
showing that ���j�:�V�!8:� � � < holdsafterall. If ���I� , thenwe aredone.Otherwise,
therearetwo cases:

Case1: Thereexists ����
C� suchthat ����1
�� . By ���j�:�V�!8:��� � � < , we have � 
- ��� ,
andthus �J
�� by transitivity of � . Case2: Thereexists ����
0� suchthat ���91
�� .
By ���j�:�V�!8:� � ��� < , we have � 
- ��� , andthus ��
0� by transitivity of � .
In any case,wehaveshownthattrichotomyholdsfor � and � , whichis thedesired
contradiction. 6
Corollary 8. For ordinals � and � , one has ��
2� if and only if ���$� .
Proof. If �l
,� , then � 
 � because� is transitive. Moreover, the inclusion
is strict since �&1�z� by regularity. This shows the left-to-right implication. For
the converse,assumethat ���z� . Then �u1�l� . Also, �¡
$� is impossible,or
elsewewouldhave ��
(� . Thus,by trichotomy, theonly remainingpossibilityis��
2� . 6
Lemma 9. If � is an ordinal and ��
�� , then � is an ordinal.

Proof. Let �/
/� . Then � is transitivesince � is a setof transitivesets.Also, for
any
; 
2� , onehas

; 
�� since� is transitive;hence
;

is transitiveaswell. 6

4



Theorem10 (Burali-F orti). The class of ordinals is not a set.

Proof. Supposetherewasa set ¢ suchthat �n
J¢ if f � is anordinal. Then ¢ is
transitive by Lemma9. Also, the elementsof ¢ aretransitive, andthus ¢ is an
ordinalitself, which implies ¢&
/¢ , acontradiction. 6
Remark. Any non-emptyclassof ordinalshasa leastelement.

Proof. By theminimality principle,any non-emptyclassof ordinalshasa mini-
malelement.By trichotomy, suchaminimal elementis least. 6
Proposition11. � is an ordinal if and only if � is a transitive set that is well-
ordered by 
 .
Proof. In theleft-to-right direction,we alreadyknow that if � is anordinal,then
it is transitive; it remainsto show thatit is well-orderedby 
 . Transitivity: If �/
; 
�£�
�� , then ��
�£ since £ is a transitive set. Trichotomy: By Lemma9 and
Proposition7. Thus, 
 definesa linearorderon � . Well-orderedness: Consider
any non-emptysubset	u
�� . Thenby regularity, thereexistssome��
�	 with�¤G2	I�,H . This impliesthatfor all

; 
/	 ,
; 1
�� , andthus � 
- ; by trichotomy.

Thus, � is minimal in 	 .

For theright-to-left direction,assumethat � is a transitivesetthatis well-ordered
by 
 . We mustshow thatany �/
2� is transitive. Soconsider£D
 ; 
0� . Since �
is transitive, we have � �";¥� £�
�� , andthus,by transitivity of the 
 -relationon �
(which is partof thedefinitionof a well-order), £¦
2� . 6
Remark. Someauthors,suchasEnderton,defineordinalswithout assumingthe
regularityaxiom. In thiscase,onemaytakeProposition11asthedefinitionof the
ordinals.

Thefollowing lemmaprovidesuswith someexamplesof ordinals:

Lemma 12. (1) H is an ordinal.

(2) If � is an ordinal, then � [ �4�0§C�M��� is an ordinal.

(3) If ¨ is a set of ordinals, then ©�¨ is an ordinal.

Proof. Eachcaseis trivial to checkdirectly from thedefinitionof anordinalasa
transitivesetof transitivesets. 6
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In particular, it follows that eachnaturalnumber Z is an ordinal. Thesearethe
only finite ordinals. The next ordinal after that is Y , the setof naturalnumbers.
Next, onehasY [ , Y [�[ , andsoon. Theunionof theseordinalsis denotedas Y«ª­¬ .
Hereis a list of thefirst coupleof ordinals,in increasingorder:

® ��¯y� ¬ � )�)�) � Y � Y [ � Y [°[ � )�)�)±Y�ªM¬ � 8�Y�ª�¬ < [ � )�)�)"YJª�² � )�)�) � YJª�³ � )�)�)
Theunionof all theordinalsin this list is denotedY�ª�Y or Y T . Onecancontinue
in asimilar fashionto Y R , Y#´ , andsoforth. Takingtheunionof all theseordinals,
onegets Y P , andonecancontinueto Y P�µ , andsoon. We will definetheseoper-
ationson ordinalsmorepreciselylateron,oncewe know a little moreabouttheir
properties.

We haveshown thateachordinalis well-orderedby the 
 -relation.Ournext goal
is to proveaconverse:eachwell-orderedsetis isomorphicto someordinal.Recall
thatan isomorphism betweenorderedsets

� 	 ���a¶�� and
� � ���a·�� is a one-to-one

and onto function ¸ {\	¹|º� suchthat � �a¶ ; if f ¸98:� <J�a· ¸98 ;@< , for all� ��; 
�	 .

Definition. The » -image (pronounced:epsilon-image)of awell-orderedset
��������

is definedasfollows: Let ¼ betheuniquefunctionwith domain
�

suchthat
for all �!
 � , ¼«8:� < �5]�^Q`°8�¼pB��"���#� < �¡�M¼«8:� <a� � � ���y)
A uniquesuchfunctionexistsby thetransfiniterecursiontheorem.The 
 -image
of
���������

is definedto be ]_^X`c¼¡���M¼«8:� <a� �!
 � � .
Lemma 13. Let � be the 
 -image of a well-ordered set

���������
. Then the follow-

ing hold:

(1) For all K � ��
 � , K � � iff ¼«8>K < 
(¼«8:� < .
(2) ¼ maps

�
one-to-one onto � .

(3) � is an ordinal.

Proof. (1) The left-to-right implication follows by definitionof ¼«8:� < � �V¼«8�K <½�K � ��� . Theright-to-left implicationfollowsby trichotomy:if ¼«8�K < 
�¼«8:� < , then�½¾zK is impossible.(2) It is clearthat ¼ is onto,since � wasdefinedto be the
rangeof ¼ . The fact that ¼ is one-to-onefollows from (1), becauseif Kn1�s� ,
then K � � or � � K , and thus ¼*8�K < 
¡¼«8:� < or ¼«8?� < 
�¼«8�K < . In eithercase,
¼«8>K < 1�¡¼«8?� < . (3) � is transitive,becauseif ��
 ; 
J� , then

; ��¼«8:� < for some
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�!
 � , andthus �/
(¼*8?� < �¡�M¼«8>K <c� K � ��� . Hence,�(�4¼«8>K < for someK�
 � ,
thus �J
C� . Also, (1) and(2) show that

� � � 
 � is isomorphicto
���������

, andthus� is well-orderedby 
 . It follows from Proposition11 that � is anordinal. 6
Corollary 14. Any well-ordered set

�>�������
is isomorphic to some ordinal � .

Namely, one can take � to be the 
 -image of
�>�������

. 6
Is it true that every well-orderedset is isomorphicto a unique ordinal? This is
indeedtrue,becauseof thefollowing fact:

Lemma 15. Two ordinals are isomorphic if and only if they are equal. The only
isomorphisms between ordinals are identity maps.

Proof. Suppose� and � areordinalsand ¸J{O��|~� is anisomorphism.We first
claim that ¸98?� < �,� for all �b
p� . We prove this by transfiniteinduction.Sotake�S
�� andsuppose,asan inductionhypothesis,that ¸98?� < �+� for all ��
�� . We
claim that ¸98:� < ���j¸98?� <a� �/
2��� . Theright-to-left inclusionholdsbecause�/
2�
implies ¸98?� < 
$¸98:� < , since ¸ is an isomorphism.For the left-to-right inclusion,
take
; 
/¸98?� < . Then

; 
(� , since� is transitive. Thus,
; �I¸98?� < for some�/
�� ,

sincȩ is onto.Thus, ¸98:� < 
�¸98?� < , andhence�C
0� sincȩ is anisomorphism.It
follows that

; 
p�V¸98?� <c� �/
(��� . Now we have thefollowing:

¸98?� < � �V¸98?� <c� �/
(��� by whatwe have justshown� ��� � ��
2��� by inductionhypothesis� �¿)
This finishesthe inductionstep. It follows that ¸98?� < �&� for all ��
f� . But now
it follows that ��� � since ¸ is onto � . Thus, ¸ is the identity mapfrom � to
itself. 6
Corollary 16. (1) Every well-ordered set

���������
is isomorphic to a unique or-

dinal � .

(2) Two well-ordered sets are isomorphic iff the have the same 
 -image.

(3) Each two well-ordered sets are either isomorphic, or one is isomorphic to
an initial segment of the other.

(4) Every ordinal is equal to its own 
 -image.
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Proof. (1) We know from Corollary14 thateverywell-orderedset
���������

is iso-
morphic to someordinal � . For uniqueness,assumethat

���������
is isomorphic

to two ordinals � and � . Then � is also isomorphicto � , andthus �u�3� by
Lemma15. (2) “ % ”: If two well-orderedsetsareisomorphic,thentheir 
 -images
mustalsobeisomorphic,andthusequalby Lemma15. “ À ”: If two well-ordered
setshave equal 
 -images,thenthey mustbe isomorphic,sinceeachof themis
isomorphicto its 
 -image. (3) If

�
and Á arewell-orderedsets,thenthey are

isomorphicto uniquerespective ordinals � and � . If �F�z� , then
�

and Á are
isomorphicby (2). Otherwise,by trichotomyandCorollary 8, either �&�z� or�$�I� . In thefirst case,

�
is isomorphicto an initial segmentof � (namely, � ),

and thus to an initial segmentof Á . The secondcaseis symmetric. (4) Every
ordinal � is isomorphicto its 
 -imageby Corollary14. But sinceboth � andits

 -imagearebothordinals,they mustthenbeequalby Lemma15. 6
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