MATH 4135/5135: INTRO. TO CATEGORY THEORY, FALL 2005

Midterm Test, November 3, 2005 Prof. P. Selinger

This is an "open book" test. You have 90 minutes.
Graduate Students: choose 4 problems.
Undergraduate Students: choose 3 problems.
Problem 1. If $f, g, h: A \rightarrow B$ are morphisms in some category \mathbf{C}, we define a 3qualizer of f, g, h to be a limit of the diagram

$$
A \xrightarrow{\frac{f}{g+}} B .
$$

(a) State (without proof) a direct definition of a 3qualizer as a pair (D, d) of an object D and an arrow $d: D \rightarrow A$ with a universal property.
Answer: A pair (D, d) is a 3qualizer of f, g, h if $d: D \rightarrow A$ and $f \circ d=g \circ d=h \circ d$, and for any other pair (E, e) where $e: E \rightarrow A$ and $f \circ e=g \circ e=h \circ e$, there exists a unique morphism $h: E \rightarrow D$ such that $e=d \circ h$.

(b) Assume that \mathbf{C} has equalizers (but not necessarily products). Prove that C has 3qualizers.

Answer: Let $c: C \rightarrow A$ be an equalizer of f and $g: A \rightarrow B$. Therefore $f \circ c=g \circ c$. Now let $z: D \rightarrow C$ be an equalizer of $g \circ c$ and $h \circ c$. Then $f \circ c \circ z=g \circ c \circ z=h \circ c \circ z$. Let $d=c \circ z$, therefore $f \circ d=g \circ d=h \circ d$.

We claim that (D, d) has the universal property. So let (E, e) be such that $e: E \rightarrow A$ and $f \circ e=g \circ e=h \circ e$. For existence of h, note that, by the universal property of (C, c), there exists $k: E \rightarrow C$ such that $c \circ k=e$. But then $h \circ c \circ k=$ $h \circ e=g \circ e=g \circ c \circ k$, so by the universal property of (D, z), there exists $h: E \rightarrow D$ such that $z \circ h=k$. But then $e=c \circ k=c \circ z \circ h=d \circ h$, so h makes (1) commute.
For uniqueness, note that c and z are both equalizers, hence monic. Therefore, $d=c \circ z$ is also monic. So if $h^{\prime}: E \rightarrow D$ is another morphism with $e=d \circ h^{\prime}$, then $d \circ h=d \circ h^{\prime}$, hence $h=h^{\prime}$ by the monic property of d.

Problem 2. Let \mathbf{C} be a category. For any (fixed) object $A \in \mathbf{C}$, consider the functor $F_{A}: \mathbf{C} \rightarrow$ Set defined by $F_{A}(B)=\operatorname{hom}_{\mathbf{C}}(A, B)$.
(a) What is $F_{A}(f)$, for a morphism $f: B \rightarrow C$ in \mathbf{C} ?

Answer: $F_{A}(f): \operatorname{hom}_{\mathbf{C}}(A, B) \rightarrow \operatorname{hom}_{\mathbf{C}}(A, C)$ is defined as $F_{A}(f)(g)=f \circ g$, for any $g: A \rightarrow B$.
(b) Prove: a morphism $f: B \rightarrow C$ is monic if and only if for all $A \in|\mathbf{C}|, F_{A}(f): F_{A}(B) \rightarrow F_{A}(C)$ is one-to-one.
Answer: Suppose f is monic. To show that $F_{A}(f)$ is one-toone, consider $g, h \in F_{A}(B)$ and suppose $F_{A}(f)(g)=F_{A}(f)(h)$.

Then $g, h: A \rightarrow B$, and $f \circ g=f \circ h$. Since f is monic, $g=h$, showing that $F_{A}(f)$ is one-to-one.
Conversely, suppose that for all objects $A \in|\mathbf{C}|$, the function $F_{A}(f)$ is one-to-one. To show that f is monic, take $g, h: A \rightarrow$ B and assume $f \circ g=f \circ h$. But then $F_{A}(f)(g)=F_{A}(f)(h)$, hence $g=h$, because $F_{A}(f)$ is one-to-one. This proves that f is monic.

Problem 3. Let \mathbf{C} be any category, and let $\mathbf{1}$ be the one-object, onemorphism category. Let $F: \mathbf{C} \rightarrow \mathbf{1}$ be the unique functor. Prove: F has a right adjoint if and only if \mathbf{C} has a terminal object. Hint: let $*$ be the unique object of $\mathbf{1}$ and consider an isomorphism of hom-sets $\operatorname{hom}_{\mathbf{C}}(A, G(*)) \cong \operatorname{hom}_{\mathbf{1}}(F(A), *)$.
Answer: First, assume that F has a right adjoint $G: \mathbf{1} \rightarrow$ C. Let * be the unique object of $\mathbf{1}$, and let $T=G(*)$. We claim that T is a terminal object of \mathbf{C}. Indeed, by adjointness, there is a natural isomorphism $\mathbf{C}(A, T) \cong \mathbf{C}(A, G(*)) \cong \mathbf{1}(F A, *)$, but $F A=*$ and the set $\mathbf{1}(F A, *)$ has exactly one element, so that $\mathbf{C}(A, T)$ is a oneelement set. This means that for any object A, there exists a unique morphism $h: A \rightarrow T$, making T terminal.
Conversely, assume that \mathbf{C} has a terminal object T, and define G : $\mathbf{1} \rightarrow \mathbf{C}$ by $G(*)=T$. Then for all objects $A, \mathbf{C}(A, G(*))$ and $\mathbf{1}(F A, *)$ are both 1-element sets, hence they are isomorphic (and the isomorphism is trivially natural). This proves that F and G are adjoints.

Problem 4. A pair (f, g) of morphisms $f: A \rightarrow B$ and $g: A \rightarrow C$ is called jointly monic if for every object H and morphisms h, k :
$H \rightarrow A, f \circ h=f \circ k$ and $g \circ h=g \circ k$ implies $h=k$.

Prove: if

is a pullback, then (f, g) is jointly monic.
Answer: Assume a pullback is given as above, and consider h, k : $H \rightarrow A$ such that $f \circ h=f \circ k$ and $g \circ h=g \circ k$. Let $f^{\prime}=f \circ h=f \circ k$, and $g^{\prime}=g \circ h=g \circ k$. Then each of the following diagram commutes by definition:

On the other hand, by the defining property of a pullback, there exists a unique h making this diagram commute, so $h=k$. This shows that (f, g) is jointly monic.

Problem 5. Let \mathbb{R} be the set of real numbers, regarded as an object in the category Set. Consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ defined
by: $f(x)=x^{2}, g(y)=1-y^{2}$. Find D, d_{1}, and d_{2} such that the following is a pullback:

Answer: By the standard formula for pullbacks in set, we can let

$$
\begin{aligned}
D & =\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid f(x)=g(y)\} \\
& =\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^{2}=1-y^{2}\right\} \\
& =\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^{2}+y^{2}=1\right\}
\end{aligned}
$$

Therefore, $D \subseteq \mathbb{R} \times \mathbb{R}$ is the unit circle, and $d_{1}, d_{2}: D \rightarrow \mathbb{R}$ are the projections onto the first and second coordinate, respectively: $d_{1}(x, y)=x, d_{2}(x, y)=y$.

