
MATH 4135/5135: INTRO. TO CATEGORY THEORY, FALL 2005
Course Notes
Peter Selinger

1 Categories, functors, natural transformations

1.1 Lecture 1, Sep 13, 2005

• Definition of a category. A category C consists of

– a class |C| of objects A, B, . . .,

– a set homC(A, B) of morphisms (or arrows) for any pair of objects
A, B (we write f : A → B if f ∈ homC(A, B)),

– an identity morphism idA : A → A for each object A,

– for all f : A → B, g : B → C, there is a composition morphism
g ◦ f : A → C,

– subject to the equations, for all A, B, C, D and f : A → B, g : B →
C, h : C → D:

idB ◦f = f = f ◦ idA (h ◦ g) ◦ f = h ◦ (g ◦ f).

• Class vs. set. We want to be able to consider the “category of all sets”.
We therefore requires the objects to form a class, rather than a set. This is
a formality intended to avoid set-theoretic paradoxes (we are not allowed
to form the “set of all sets”). If some category indeed has a set of objects,
we also call it a small category. For the most part, we will ignore such
cardinality issues, unless a particular situation requires special care.

• Examples of categories.

– Set (sets and functions)

– Grp (groups and group homomorphisms)

– Ab (abelian groups and group homomorphisms)

– Rng (rings and ring homomorphisms)

– Top (topological spaces and continuous functions)

– Veck (vector spaces over field k and linear functions)

– Rel (sets and relations)

1

– etc.

• Examples of categorical definitions.

– morphisms f : A → B and g : B → A are inverses of each other
if g ◦ f = idA and f ◦ g = idB . A morphism f is invertible if it
has an inverse, in which case the inverse is necessarily unique (Proof:
suppose g, h : B → A are two inverses of f , then

g = g ◦ idb = g ◦ (f ◦ h) = (g ◦ f) ◦ h = idA ◦h = h,

so g = h.) We write f−1 : B → A for the unique inverse of f : A →
B, if any.

– a morphism f : A → B is called a monomorphism or monic if for
all objects C and all g, h : C → A, f ◦ g = f ◦ h implies g = h.
Lemma: in the category of sets and functions, the monomorphisms
are precisely the injective functions.

1.2 Lecture 2, Sep 15, 2005

• Notations. We use the following notations in a category C:

– The hom-set homC(A, B) is also written C(A, B), or if the category
C is clear from context we also write hom(A, B) or simply (A, B).

– If f ∈ (A, B), we write f : A → B or A
f
−→ B. Moreover, A is

called the domain of f and B is called the codomain of f . We write
dom(f) = A, cod(f) = B.

– Diagrams: a diagram such as

A
f

//

h

��

B

g

��

C
k // D

is a notation for an equation such as g ◦ f = k ◦h. In particular, when
we write a diagram, we always mean that it commutes. If a part of a
diagram is not assumed to commute, we indicate this explicitly by the

2



symbol “ ”, as in:

A
f

//

h

��

B

g

��

C
k // D

Note that the symbol “ ” only removes one equation, so for example,
the diagram

C
g

//

h
// A

f
// B

means g ◦ f = h ◦ f (but not necessarily g = h).

• Graphs. We briefly discuss an alternate presentation of the definition of a
category in terms of graphs. A graph consists of

– a class V of vertices A, B, . . .,

– a class A of arrows f, g, . . .,

– two operations dom : V → A and cod : V → A, called the domain
and codomain operation.

Finite graphs can be visualized:

• // •

����
��

��
�

����
��

��
� dd

•

OO

Note that this notion of graph allows multiple arrows between two vertices,
and it also allows arrows from one vertex to itself (loops).

• In a graph, we write (A, B) = {f | dom(f) = A, cod(f) = B}.

• A category is a graph with additional constants and operations

idA ∈ (A, A) ◦ : (A, B) × (B, C) → (A, C)

satisfying the associativity and unit laws (h◦ g)◦f = h◦ (g ◦f), idB ◦f =
f = f ◦ idA, whenever f, g, h are of the appropriate types. (In addition,
we also require (A, B) to be a set for all A, B, a property sometimes called
local smallness. Not everybody requires this).

3

• The definition of categories in terms of graphs reveals the combinatorial
character of the definition, and it allows us to visualize finite categories by
drawing their graphs (and discussing the composition operation).

– 0 is the unique category with 0 objects, also known as the empty cate-
gory.

– 1 is the unique category with one object and one morphism. Its under-
lying graph is:

• dd

– 2 is the following category with two objects and three morphisms:

•DD
// •DD

There is a unique composition operation on this graph.

– 3 is the following category with three objects and six morphisms:

•DD
// **•DD

// •DD

We often omit the identity arrows when we picture a category as a
graph, yielding the simpler picture:

• // **• // •

– ↓↓ is the unique category with the following underlying graph (identity
arrows not pictured):

• //
// •

• Concrete and abstract categories. Categories where the objects are spaces
and the morphisms are structure-preserving functions, such as Set, Grp,
and most of the examples from Lecture 1, are also known as concrete cat-
egories. All other categories, such as 0, 1, 2, ↓↓, are known as abstract
categories.

• Monoids. A category with one object is called a monoid. Equivalently, a
monoid can be described as a set M together with a multiplication operation
· : M × M → M and a unit element e ∈ M , such that for all x, y, z ∈ M ,

(x · y) · z = x · (y · z), e · x = x = x · e.

4



(In other words, like a group, but without inverses). Note that the elements
of M form the morphisms of a one-object category (where the unique object
does not need a name).

If (M, ·, e) and (N, ·, e′) are monoids, then a monoid homomorphism is
function f : M → N such that f(x · y) = f(x) · f(y) and f(e) = e′, for
all x, y ∈ M .

We have seen that each monoid can be regarded as a one-object (abstract)
category.

The class of all monoids, together with monoid homomorphisms, also forms
a (concrete) category, which we call Mon.

• Groups. A group can be described as a one-object category in which every
morphism is invertible.

• Preorders. A category where there is at most one arrow between any pair of
objects A, B is called a preorder. Equivalently, a preorder can be described
as a set (or class) P , together with a binary relation 6, subject to these
axioms, for all x, y, z ∈ P :

x 6 x (reflexivity)
x 6 y, y 6 z ⇒ x 6 z (transitivity)

Here, the elements of P form the objects of a category, and there is a unique
morphism f : x → y iff x 6 y.

Given two preorders P , Q, a function f : P → Q is called monotone if for
all x, y ∈ P , x 6 y ⇒ f(x) 6 f(y).

We have seen that each preorder can be regarded as an (abstract) category.

The class of all preorders, together with monotone functions, also forms a
(concrete) category, which we call Pre.

• Partial orders, linear orders. A preorder (P, 6) is called a partial order
if it satisfies the axiom of antisymmetry. A partial order is moreover called
a total order if it also satisfies the axioms of totality.

x 6 y ∧ y 6 x ⇒ x = y (antisymmetry)
∀x, y ∈ P (x 6 y ∨ y 6 x) (totality)

A partially ordered set is also called a poset. The category of posets and
monotone maps is called Poset.

5

1.3 Lecture 3, Sep 20, 2005

• Discrete categories. A category is discrete if it has no morphisms except
identity morphisms. A discrete category is essentially uniquely determined
by its class of objects. We sometimes identify a discrete category with
its class of objects, so for example, if C is a category, we write |C| to
denote the class of objects of C, but we also write |C| to denote the discrete
category that has the same objects as C.

• Duality. If C is a category, we write C
op for the category obtained from

C by reversing the direction of all the arrows. C
op is called the dual or

opposite category of C. Formally, we have: |Cop| = |C|, C
op(A, B) =

C(B, A), and g ◦Cop f = f ◦C g.

• Dual of a property or construction. Because each category has a dual
category, each property of categories also has a dual property. For example,
f : A → B is called an epimorphism in C if f : B → A is a monomorphism
in C

op. Concretely, f : A → B is an epimorphism if for all objects C, and
all pairs of morphism g, h : B → C, g ◦f = h◦f implies g = h. Compare
this to the definition of a monomorphism from Lecture 1. In the category
Set, the epimorphisms are exactly the surjective functions.

• Functors. Let C and D be categories. A functor F : C → D is given by
the following data:

– an object map F : |C| → |D|,

– for any two objects A, B ∈ C, a morphism map F : C(A, B) →
D(FA, FB),

– such that F (idA) = idFA and F (g ◦f) = Fg ◦Ff , for all f : A → B
and g : B → C in C.

In other words, a functor maps each morphism A
f
−→ B in C to a morphism

FA
Ff
−−→ FB in D, and preserves identities and composition.

• Examples of functors on Set.

– The covariant powerset functor. The powerset of a set X is

PX = {U | U ⊆ X}.

6



Given a function f : X → Y , we can define Pf : PX → PY to
be the direct image operation: for all U ∈ PX , define

(Pf)(U) = f [U ] = {f(x) | x ∈ U}.

With this assignment, the powerset operation is a functor P : Set →
Set. Indeed, we check that identities and composition are preserved:

(P idX )(U) = {idX(x) | x ∈ U}
= {x | x ∈ U}
= U
= idPX(U),

(Pg ◦ Pf)(U) = (Pg)({f(x) | x ∈ U})
= {g(y) | y ∈ {f(x) | x ∈ U}}
= {g(f(x)) | x ∈ U}
= {g ◦ f(x) | x ∈ U}
= (P(g ◦ f))(U).

– Multiplication by a fixed set. Let A be a fixed set, and consider the
operation FX = X×A on sets, where “×” denotes the usual cartesian
product of sets. To make this into a functor F : Set → Set, we need
to define, for any function f : X → Y , a function Ff : FX → FY ,
i.e., Ff : X × A → Y × A. There is only one obvious way to do so,
namely:

Ff(x, a) = (fx, a).

One easily checks that F (g ◦ f) = Fg ◦ Ff and F id = id, so this is
indeed a functor.
Note: it is common to denote the action of a functor on morphism by
the same symbols as the action on objects. We therefore also write the
function Ff as

X × A
f×A
−−−→ Y × A.

– Disjoint union with a fixed set. As in the previous example, let A
be a fixed set, and define FX = X + A, where “+” denotes disjoint
union of sets. This can be made into a functor F : Set → Set by
defining, for each f : X → Y , a function Ff : X + A → Y + A in
the obvious way.

– The finite powerset functor. If X is a set, let us write PfinX =
{U ⊆ X | U is finite}. PfinX is called the finite powerset of X . The

7

Pfin operation can be made into a functor Pfin : Set → Set in the
same way as P .

• Examples of functors between two different categories.

– To each group G, we can associate its underlying set of elements |G|.
To each group homomorphism f : G → H , we can associate its
underlying function g : |G| → |H |. This information defines a functor
F : Grp → Set, namely:

F (G) = |G|,
F (f) = f

This functor is called the forgetful functor from Grp to Set, because
it does nothing except forget part of the structure of G and part of the
properties of f .

– Similarly, there are obvious forgetful functors F : Top → Set (map-
ping each topological space to its underlying set), F : Rng → Ab
(mapping each ring (R, +, ·) to its underlying abelian group (R, +)),
etc.

• Covariant and contravariant functors. A contravariant functor is like a
functor, except that it reverses the direction of the arrows. It maps objects

A to FA, and morphisms A
f
−→ B to FB

Ff
−−→ FA. It preserves identities

in the usual way, and composition in the reverse sense, i.e., F (g ◦ f) =
Ff ◦ Fg.

Equivalently, a contravariant functor F from C to D is simply an ordinary
functor F : Cop → D.

A functor that is not contravariant (i.e., an ordinary functor) is also some-
times called a covariant functor.

• Examples of contravariant functors.

– The contravariant powerset functor. The powerset operation can
also be given the structure of a contravariant functor. Namely, given
f : X → Y , we can define the inverse image function f−1 : PY →
PX via f−1(V ) = {x ∈ X | f(x) ∈ V }, for V ∈ PY . The the
assignment FX = PX , Ff = f−1 defines a contravariant functor
Set → Set.

8



– The exponential functor. Let A be a fixed set. Let us write AX =
{f | f : X → A} for the set of all functions from X to A. The opera-
tion FX = AX extends naturally to a contravariant functor. Namely,
given f : X → Y , we can define Af : AY → AX as follows:

Af (s) = s ◦ f,

where s ∈ AY is a function s : Y → A.

• Functors of more than one variable. Let C, D, and E be categories. A
functor in two variables, also known as a bifunctor, from C and D to E, is
given by the following:

– to each pair of objects A ∈ |C| and B ∈ |D|, we associate an object
F (A, B) ∈ |E|.

– to each pair of morphisms f : A → A′ in C and g : B → B′ in D,

we associate a morphism F (A, B)
F (f,g)
−−−−→ F (A′, B′) in E,

– identities and composition are preserved simultaneously, i.e.,

F (idA, idB) = idF (A,B) : F (A, B) → F (A, B)
F (f ′ ◦ f, g′ ◦ g) = F (f ′, g′) ◦ F (f, g),

for all f : A → A′, f ′ : A′ → A′′ in C and g : B → B′, g′ : B′ →
B′′ in D.

The composition property can be written as a diagram:

F (A, B)
F (f,g)

//

F (f ′◦f,g′◦g) &&M
MMMMMMMMM
F (A′, B′)

F (f ′,g′)

��

F (A′′, B′′)

Functors of 3, 4, or more variables are defined analogously.

• Example of a bifunctor. F (X, Y ) = X × Y defines a bifunctor in the
category of sets, where F (f, g)(x, y) = (f(x), g(y)).

• The cartesian product of categories. Let C,D be two categories. The
cartesian product of C and D is the category E whose objects are pairs of
objects, and whose morphisms are pairs of morphisms of C and D. More

9

precisely, we have |E| = |C|×|D|, and E((A, B), (A′, B′)) = C(A, A′)×
D(B, B′). Concretely, this means that if f : A → A′ in C and g : B → B′

in D, then
(f, g) : (A, B) → (A′, B′)

in E. Identities and composition are componentwise, so e.g.

(f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g).

We write E = C×D.

• Bifunctors as ordinary functors. A bifunctor F from C and D to E can
be equivalently described as an (ordinary) functor F : C× D → E, where
C×D is the cartesian product of categories.

• Mixed variance functors. It is even possible to have a functor in several
variables that is covariant in some variables and contravariant in others.
Such a functor is said to have mixed variance. For example, consider a
functor F that maps X ∈ C and y ∈ D to F (X, Y ) ∈ E, and that is
covariant in X ∈ C and contravariant in Y . In terms of cartesian product
and duality, this can be expressed simply as a functor

F : C ×D
op → E

• Example of mixed variance functor. An example of a mixed variance
functor is the following function in two variables on the category of sets:
F (X, Y ) = XY . This associates to each two sets X and Y the set XY of
all functions from Y to X .

Given f : X → X ′, there is a natural way to define

F (f, Y ) = fY : XY → X ′Y ,

namely (fY )(s) = f ◦ s, where s : Y → X . So F is covariant in X .

Also, given g : Y → Y ′, there is a natural way to define

F (X, g) = Xg : XY ′

→ XY ,

namely (Xg)(s) = t ◦ g, where t : Y ′ → X . So F is contravariant in Y .

In both variables at the same time, we have

F (f, g) = fg : XY ′

→ X ′Y

given by fg(t) = f ◦ t◦g. Check that this really preserves composition and
identities!

10



• Some functors and non-functors on groups.

– To each group G, we can associate its commutator subgroup [G, G],
which is the subgroup generated by the elements xyx−1y−1, where
x, y ∈ G. Suppose f : G → H is a group homomorphism. Then
f , restricted to the subgroup [G, G], is a group homomorphism f :
[G, G] → [H, H ]. Namely, for each generator xyx−1y−1 ∈ [G, G],
we have f(xyx−1y−1) = f(x)f(y)f(x−1)f(y−1), which is an el-
ement of [H, H ]. Checking that identities and composition are pre-
served is trivial in this case. Hence, the assignment F (G) = [G, G]
and F [f ] = f |[G,G] defines a functor.

– To each group G, we can associate its center Z(G) = {g ∈ G | ∀h ∈
G.gh = hg}. Then Z(G) is an abelian group. Do we obtain a functor
Z : Grp → Ab? As you will show in the homework, this is not the
case: Z cannot be extended to morphisms to obtain a functor.

1.4 Lecture 4, Sep 22, 2005

• Composition of functors. If F : C → D and G : D → E are functors,
then so is G ◦ F : C → Ee, defined by G ◦ F (A) = G(F (A)) and
G ◦ F (f) = G(F (f)). Further, idC : C → C is a functor.

• The category of small categories. The category Cat has as objects small
categories (i.e., those whose objects form a set), and as morphisms all func-
tors.

• Isomorphism of categories. A functor F : C → D is an isomorphism
of categories if there exists G : D → C such that F ◦ G = idC and
G ◦F = idD. In other words, if F is an isomorphism in Cat. Equivalently:
F : C → D is an isomorphism of categories if F : |C| → |D| is one-to-
one and onto objects, and for all A, B ∈ C, F : C(A, B) → D(FA, FB)
is one-to-one and onto.

• Full and faithful functors. A functor F : C → D is faithful if for all
A, B, F : C(A, B) → D(FA, FB) is one-to-one. F is full if for all
A, B, F : C(A, B) → D(FA, FB) is onto. Note that the properties of
faithfulness and fullness only take into account the action of F on hom-
sets, not on objects (i.e., F may or may not be one-to-one or onto objects).

• Examples.

11

– The forgetful functor F : Grp → Set from groups to sets is faithful.
Because: two group homomorphisms f, g : G → H satisfy f = g
(as group homomorphisms in Grp) if and only if they satisfy f = g
(as functions in Set). However, F is not full, because there are some
functions f : G → H that are not (the image under F of) a group
homomorphism.

– The forgetful functor F : Ab → Grp from abelian groups to groups
is full and faithful. Because: being abelian is a property of groups, not
of homomorphism. If G, H are two abelian groups, then f : G → H
is a “homomorphism of abelian groups” if and only if it is a “homo-
morphism of groups”.

• Subcategories. Let C be a category. A subcategory D of C consists of:

– a subclass |D| ⊆ |C| of the objects of C, and

– for all A, B ∈ D, a subset D(A, B) ⊆ C(A, B), such that

– A ∈ |D| implies idA ∈ D(A, A), and

– A, B, C ∈ |D| and f ∈ D(A, B) and g ∈ D(B, C) implies g ◦ f ∈
D(A, C).

Note that a subcategory is not just a category D whose class of objects and
morphisms is contained in those of C. Being a subcategory also means that
the operations (identities and composition) are as in C.

• Inclusion functor, full subcategory. If D is a subcategory of C, then the
inclusion functor Fincl : D ↪→ C if given by Fincl (A) = A and Fincl (f) =
f . Inclusion functors are always faithful. If Fincl is also full, then we say
that D is a full subcategory of C. Equivalently, D ⊆ C is a full subcategory
if for all A, B ∈ D, D(A, B) = C(A, B).

• Examples. Ab is a full subcategory of Grp. Setfin , the category of finite
sets, is a full subcategory of Set. Setinj , the category of sets and injective
functions, is a subcategory of Set, but it is not full.

• Lluf functors and subcategories. A functor F : D → C is lluf (“full”
spelled backwards) if F is onto objects, i.e., for all A ∈ |C|, there exists
some B ∈ D such that A = F (B). We say that a subcategory D ⊆ C is
lluf if its inclusion functor if lluf, equivalently, if |D| = |C|.

12



• Examples of lluf subcategories. Setinj , from the previous example, is a
lluf subcategory of Set. Setsurj , the category of sets and surjective func-
tions, is also a lluf subcategory of Set.

• Natural transformations. Let C,D be categories, and let F, G : C → D

be functors. A natural transformation η : F → G is given by the following:

– for each object A ∈ |C|, a choice of morphism ηA : FA → GA, such
that the following diagram commutes for all f : A → B:

FA
ηA //

Ff

��

GA

Gf

��

FB
ηB // GB.

• Examples of natural transformations. It is helpful to think of a functor F
as an “object” FA, which depends on a “set parameter” A. We can there-
fore think of a natural transformation as a “morphism” ηA : FA → GA,
parameterized by a set A. Naturality means that this morphism changes
“consistently” as A changes.

– Consider the singleton operation singX : x 7→ {x} of type X →
PX . This operation is defined for any set X . Moreover, it is “natural
in X”, in the sense that for all f : X → Y , the following diagram
commutes:

X
singX //

f

��

PX

Pf

��

Y
singY // PY.

Indeed, we can check that for any x ∈ X ,

(Pf) ◦ (singX)(x) = (Pf)(singX(x))
= (Pf)({x})
= {fx}
= singY (fx)
= (singY ) ◦ f(x).

Therefore, singX : X → PX is a natural transformation in the pa-
rameter X , also written sing : idSet → P .

13

– Consider the “flattening” operation flatX : P(PX) → PX , which
is defined by

flatX(U) =
⋃

U∈U

U.

Here is an example: flatX{{x, y}, {z}, {w, z}} = {x, y, z, w}.
This operation is parametric in a set X . It is also a natural transforma-
tion, in the sense that the following diagram commutes:

P(PX)
flat X //

P(Pf)

��

PX

Pf

��

P(PY )
flat Y // PY.

We omit the proof, but give an example instead: suppose x, y, z, w ∈
X , and consider the element U = {{x, y}, {z}, {w, z}} ∈ P(PX).
Then

(Pf) ◦ (flatX )(U) = (Pf)({x, y, z, w})
= {fx, fy, fz, fw},

whereas

(flatY ) ◦ (P(Pf))(U) = (flatY )({{fx, fy}, {fz}, {fw, fz}})
= {fx, fy, fz, fw}.

So indeed, the two operations are the same in this example and the
diagram commutes. Therefore, flatX : P(PX) → PX is a natural
transformation in the parameter X , and we also write

flat : P ◦ P → P

– Consider the operation πX : X × A → X , given by πX (x, a) = x.
Let us think of the set X as a parameter and of A as constant. Then
the πX operation is natural in X , namely, for all f : X → Y , we have

X × A
πX //

f×A

��

X

f

��

Y × A
πY // Y.

Indeed, this is shown by a simple calculation:

f(πX(x, a)) = f(x)
πY ((f × A)(x, a)) = πY (f(x), a) = f(x).

14



1.5 Lecture 5, Sep 27, 2005

• Natural transformations, 2-categorical notation. Recall that a functor
F : C → D is between two categories, but a natural transformation
η : F → G is between two functors. Sometimes, a good way to pic-
ture a natural transformation is as a two-dimensional “cell” connecting two
functors, like this:

C

F
++

G

33⇓ η D

• Composition of natural transformations. If F, G, H : C → D are three
functors, and η : F → G and η′ : G → H are natural transformations, then
η′ ◦ η : F → H is a natural transformation, defined by

FA
ηA //

(η′◦η)A

66GA
η′

A // HA

Proof: to show that η′ ◦ η is natural, let f : A → B, and consider

FA

Ff

��

ηA

//

(η′◦η)A

((

GA

Gf

��

η′

A

// HA

Hf

��

FB
ηB //

(η′◦η)B

66GB
η′

B // HB

The two squares and the two “triangles” commute, so the outer perimeter
commutes as well.

• The identity natural transformation. Let F : C → D be any func-
tor. Then idF : F → F is the identity natural transformation, defined by
(idF )A = idFA : FA → FA, for all A ∈ |C|.

• Natural isomorphism. Let F, G : C → D be functors. A natural trans-
formation η : F → G is a natural isomorphism if each component is an

isomorphism, i.e., for all objects A ∈ |C|, ηA : FA
∼=
−→ GA is an isomor-

phism. Equivalently, η : F → G is a natural isomorphism if and only if
there exists a natural transformation η′ : G → F such that η′ ◦ η = idF and
η ◦ η′ = idG.

15

• Exercise. Prove the previous statement, i.e., a natural transformation η is
invertible if and only if ηA is invertible for every A.

• Example of natural isomorphism. Let 2 = {0, 1} be some two-element
set, and consider the following two functors F, G : Setop → Set. FX =
PX is the contravariant power set functor, and GX = 2X is the contravari-
ant functor mapping X to the set 2X of all functions from X to 2.

Intuitively, F and G are “the same functor”, yet they are not quite identical.
What we can say is that the sets FX and GX have the same cardinality,
i.e., they are isomorphic sets. We now claim that the two functors are in fact
naturally isomorphic.

The isomorphism between PX and 2X is well-known: it maps each subset
of X to its characteristic function. More precisely: ηX : PX → 2X is
given by

ηX(U) = χU , where χU (x) =

{

1 if x ∈ U
0 if x 6∈ U

Clearly, ηX is an isomorphism; its inverse η−1
X : 2X → PX is given by

η−1
X (χ) = {x ∈ X | χ(x) = 1}.

What is left to check is that ηX is natural, i.e., that the following diagram
commutes, for all f : X → Y :

PY

Pf

��

ηY // 2Y

2f

��

PX
ηX // 2X

Recall that for V ∈ PY , (Pf)(V ) = f−1[V ] = {x ∈ X | f(x) ∈ V },
and for s ∈ 2Y , 2f (s) = s ◦ f . Let V ⊆ Y and x ∈ X ; we calculate

2f ◦ ηY (V )(x) = 2f (ηY (V ))(x)
= 2f (χV )(x)
= χV ◦ f(x)
= χV (f(x))

=

{

1 if f(x) ∈ V
0 if f(x) 6∈ V

16



Also,
ηX ◦ Pf(V )(x) = ηX (Pf(V ))(x)

= ηX (f−1[V ])(x)
= χf−1[V ](x)

=

{

1 if x ∈ f−1[V ]
0 if x 6∈ f−1[V ]

So 2f ◦ ηY = ηX ◦ Pf , and the diagram commutes.

• Equivalence of categories. Let C and D be categories, and let F : C → D

and G : D → C be functors. We recall that this situation is an isomorphism
of categories if G ◦ F = idC and F ◦ G = idD. A weaker, but more useful
notion is that of an equivalence of categories: in this case, we only require
that the functor G ◦ F is naturally isomorphic to idC, and that F ◦ G is
naturally isomorphic to idD.

More precisely, an equivalence of categories C and D is given by a 4-
tuple (F, G, η, ε), where F : C → D and G : D → C are functors, and

η : G ◦ F
∼=
−→ idC and ε : F ◦ G

∼=
−→ idD are natural isomorphisms.

• Remark. We say that the categories C and D are equivalent if there exists
an equivalence between them. Note, however, that the actual equivalence
need not be unique. Not only could there be more than one pair of functors
(F, G) establishing the equivalence, but for each such pair (F, G), there
could in general be more than one pair of natural isomorphisms (η, ε).

• Example of equivalence of categories. For each natural number n > 0, let
us fix some particular n-element set n, for example,

n := {0, 1, . . . , n − 1}.

Sets of this form are also called finite ordinals. Let FinOrd be the category
whose objects are finite ordinals, and whose morphisms are all functions be-
tween them. Note that FinOrd has countably many objects and morphisms.

On the other hand, let Setfin be the category of all finite sets and all functions
between them.

There is a sense in which FinOrd and Setfin are “the same”: specifically,
each object of FinOrd is “isomorphic to” some object of Setfin, and vice
versa. On the other hand, clearly these categories are not isomorphic, since
FinOrd has countably many objects, whereas Setfin has a proper class. In-
stead, the categories FinOrd and Setfin are equivalent, as we will now show.

17

Note that FinOrd is a subcategory of Setfin; so let F : FinOrd ↪→ Setfin be
the inclusion functor F (n) = n, F (f) = f .

We define a functor G : Setfin → FinOrd as follows: for each finite set A,
define GA = n, where n = |A|, i.e., A has n elements. The question is
how to extend G to morphisms. Given f : A → B, where |A| = n and
|B| = m, we have to define Gf : n → m, in such a way that G is a functor.

To do this, let us pick for each finite set A some (arbitrary, but fixed) bijec-

tion γA : A
∼=
−→ n, where n = |A|. Then we define Gf : n → m to be the

unique function making the following diagram commute:

A

γA ∼=

��

f
// B

γB∼=

��
n

Gf
// m.

In symbols, we define Gf = γB ◦ f ◦ γ−1
A . We claim that G is a functor.

Indeed, we have, for all A, B, C and f : A → B and g : B → C:

G(idA) = γA ◦ idA ◦γ−1
A

= γA ◦ γ−1
A

= idGA,
G(g ◦ f) = γC ◦ g ◦ f ◦ γ−1

A

= γC ◦ g ◦ γ−1
B ◦ γB ◦ f ◦ γ−1

A

= Gg ◦ Gf,

so G is indeed a functor.

Next, we need natural isomorphisms η : G ◦ F
∼=
−→ id and ε : F ◦ G

∼=
−→ id.

We first describe ηn : G(F (n)) → n. Note that G(F (n)) = G(n) = n by
definition of G, F . So it is tempting to define ηn = idn. However, this is
not in general a natural transformation, as it would not make the following
diagram commute:

n

G(Ff)=γm◦f◦γ−1

n

��

ηn
// n

f

��
m

ηm
// m

18



Instead, the logical choice, making the above diagram commute, is ηn =

γ−1
n , and indeed, this therefore defines a natural isomorphism η : G ◦F

∼=
−→

id.

For the converse direction, we similarly define εA : F (G(A)) → A by
εA = γ−1

A , which is the required natural isomorphism, because

n

F (Gf)=γB◦f◦γ
−1

A

��

εA // A

f

��
m

εB // B

Therefore, FinOrd and Setfin are equivalent categories.

1.6 Lecture 6, Sep 29, 2005

• Functor category. Let C,D be two categories. The functor category D
C

is defined as follows: its objects are functors F : C → D. A morphism in
D

C from F to G is a natural transformation η : F → G.

• Examples of functor categories for simple C.

– Let 1 be the one-object, one-morphism category. Then D
1 ∼= D.

– Let |2| be the two-object discrete category. Then D
|2| ∼= D ×D.

– Let 2 = • → • be the two-object, three-arrow category. Then D
2 has

as its objects functors F : 2 → D. By a homework problem, such
functors are in one-to-one correspondence with the morphisms of D,
i.e., an object of D

2 is a morphism of D. Moreover, a morphism η :
f → g in D

2 is (in one-to-one correspondence with) a commutative
diagram

A

f

��

η0 // B

g

��

A′
η1

// B′.

Composition in D
2 is given by pasting of diagrams:

A

f

��

η0 // B

g

��

ε0 // C

h

��

A′
η1 // B′

ε1 // C ′.

19

• Natural transformations in more than one variable. Theorem: a family
of operations is a natural transformation in multiple variables jointly if and
only if it is natural in each variable separately (with the remaining variables
fixed).

• Side note: proofs by “diagram pasting”.

• Monomorphisms, epimorphisms, split monics and epis. (composition of
monics is monic; g ◦ f monic implies f is monic, notation for monics and
epics. Examples in Set of monics that are not split.)

• Terminal objects, initial objects, zero objects, zero morphisms. (exam-
ples in Set, Grp, sets and partial functions. Terminal object is unique up to
iso).

2 Universal constructions: Products, Limits, Adjunc-
tions

2.1 Lecture 7, Oct 4, 2005

• Products, Definition 1 Let A, B be objects in a category C. A product
cone of A, B is a triple (D, π1, π2), where D is an object and π1 : D → A
and π2 : D → B are morphisms (called the projections), satisfying the
following universal property: for all objects C and all pairs of morphisms
f : C → A and g : C → B, there exists a unique h : C → D making the
following diagram commute:

C

f

����
��

��
��

��
��

��
��

g

��
88

88
88

88
88

88
88

88

∃!h��

D

π1

yyttttttttttt

π2

%%K
KK

KKKKKKKK

A B.

(1)

• Notation. We usually write h = 〈f, g〉 for the unique morphism making
the above diagram commute.

• Lemma: uniqueness up to isomorphism. Let A, B be objects, and let
(D, π1, π2) and (D′, π′

1, π
′
2) be two product cones. Then there exists an

20



isomorphism ϕ : D′
∼=
−→ D such that π′

1 = π1 ◦ ϕ and π′
2 = π2 ◦ ϕ, i.e.,

such that
D′

π′

1

����
��

��
��

��
��

��
��

π′

2

��
99

99
99

99
99

99
99

99

ϕ∼=
��

D

π1

yysssssssssss

π2

%%K
KKKKKKKKKK

A B.

Proof. By the universal property of the product cone (D, π1, π2), there
exists a morphism ϕ = 〈π′

1, π
′
2〉 : D′ → D making the above diagram

commute. We must show that ϕ is an isomorphism. But by the universal
property of the product cone (D′, π′

1, π
′
2), there exists a morphism ϕ′ =

〈π1, π2〉 : D → D′ in the opposite direction. Then the following diagram
commutes:

D′

π′

1

����
��

��
��

��
��

��
��

π′

2

��
99

99
99

99
99

99
99

99

ϕ∼=
��

D

π1

yysssssssssss

π2

%%K
KKKKKKKKKK

ϕ′∼=
��

A D′
π′

1

oo

π′

2

// B.

Now let us consider morphisms h : D′ → D′ that make the following
diagram commute:

D′

π′

1

����
��

��
��

��
��

��
�

π′

2

��
;;

;;
;;

;;
;;

;;
;;

;

h

��

A D′
π′

1

oo

π′

2

// B.

By the above, h = ϕ′ ◦ ϕ is one such morphism, but clearly h = idD′

is another. The uniqueness part of the universal property for (D′, π′
1, π

′
2)

implies that ϕ′ ◦ ϕ = idD′ . By a similar argument, we have ϕ ◦ ϕ′ = idD,
hence ϕ is an isomorphism as desired. �

21

• Notation. Since a product D of A and B is “essentially” unique (i.e., unique
up to isomorphism), we use the notation D = A × B. However, this is
slightly misleading, as a product not only involves an object, but also the
two projections.

• Products, Definition 2. Let A, B be objects in a category C. A cone over
A, B is a triple (E, p1, p2), where E is an object and p1 : E → A and
p2 : E → B are morphisms. (Note that a cone is not required to satisfy any
further properties).

If (E, p1, p2) and (E′, p′1, p
′
2) are two cones over A, B, then a morphism of

cones is a morphism f : E → E ′ such that the following diagram com-
mutes:

E

p1

����
��

��
��

��
��

��
��

p2

��
99

99
99

99
99

99
99

99

f
��

E′

p′

1
yyttttttttttt

p′

2 %%K
KKKKKKKKKK

A B.

Definition. A product cone is a terminal object in the category of cones
and cone morphisms.

• Equivalence of Definitions 1+2. Definition 2 is clearly equivalent to Defi-
nition 1; the universal property required of a product cone has simply been
restated in terms of the universal property of a terminal object. The re-
quirement that certain diagrams commute has been neatly separated from
the universal property by packaging it into the definition of a morphism of
cones.

• Advantage of Definition 2. Since we already know that terminal objects
are unique up to isomorphism, it immediately follows that product cones
are unique up to isomorpism of cones. So by stating the definition in a
particular way, we are able to reuse a previous lemma instead of reproving
it in a new context.

• Products, Definition 3. Let A, B be objects in a category C. A product
structure of A, B is given by a 4-tuple (D, π1, π2, 〈−,−〉), where D is an
object, π1 : D → A and π2 : D → B are morphisms, and 〈−,−〉 is a
family of operations

〈−,−〉C : C(C, A) ×C(C, B) → C(C, D),

22



subject to the following three equations, for all C, f : C → A, g : C → B,
and h : C → D:

(P1) π1 ◦ 〈f, g〉 = f
(P2) π2 ◦ 〈f, g〉 = g
(P3) 〈π1 ◦ h, π2 ◦ h〉 = h

• Discussion. The universal property of Definition 1 has been replaced by an
operation (namely, (f, g) 7→ 〈f, g〉) and equations. In this sense, Definition
3 is an algebraic definition.

• Equivalence of Definitions 1+3. Given a product cone (D, π1, π2) satisfy-
ing the universal property of Definition 1, we can let 〈f, g〉 be the unique
morphism h making diagram (1) commute. Equations (P1) and (P2) fol-
low directly from diagram (1). Equation (P3) follows from uniqueness: in
the diagram

C

π1◦h

����
��

��
��

��
��

��
��

π2◦h

��
88

88
88

88
88

88
88

88

��

D

π1

zzttttttttttt

π2

%%J
JJJJJJJJJJ

A B,

the dotted arrow can be either h or 〈π1 ◦ h, π2 ◦ h〉; since either one makes
the diagram commute, by uniqueness, (P3) follows.

Conversely, given a product structure (D, π1, π2, 〈−,−〉) in the sense of
Definition 3, we claim that (D, π1, π2) satisfies the universal property of
Definition 1. Indeed, given any C and f : C → A, g : C → B, we
can define h = 〈f, g〉 : C → D, and this choice will make diagram (1)
commute by (P1) and (P2). For uniqueness, suppose k : C → D is
another morphism such that

C

f

����
��

��
��

��
��

��
��

g

��
88

88
88

88
88

88
88

88

k

��

D

π1

yyttttttttttt

π2

%%K
KK

KKKKKKKK

A B.

23

Then
k

(P3)
= 〈π1 ◦ k, π2 ◦ k〉 = 〈f, g〉 = h.

This proves uniqueness and therefore the universal property. Finally, it is
clear that the two constructions are mutually inverse, establishing the equiv-
alence of the two definitions. �

2.2 Lecture 8, Oct 6, 2005

• Remark. Equations (P1)–(P3) are equivalent to the following four equa-
tions, for all C, C ′ and f : C → A, g : C → B, k : C ′ → C:

(P1) π1 ◦ 〈f, g〉 = f
(P2) π2 ◦ 〈f, g〉 = g
(P3a) 〈π1, π2〉 = idD

(P3b) 〈f ◦ k, g ◦ k〉 = 〈f, g〉 ◦ k

Proof. Assume (P1)–(P3) hold. Clearly, (P3a) follows by setting h =
idD. Also, (P3b) follows like this:

〈f ◦ k, g ◦ k〉
(P1,P2)

= 〈π1 ◦ 〈f, g〉 ◦ k, π2 ◦ 〈f, g〉 ◦ k〉
(P3)
= 〈f, g〉 ◦ k.

Conversely, (P3a) and (P3b) clearly imply (P3) by letting f = π1, g =
π2, and k = h. �

• Products, Definition 4 Let A, B be objects in a category D. A product
structure of A, B is given by a pair (D, ϕ), where D is an object, and ϕ is
a natural isomorphism of hom-sets

ϕC : C(C, A) ×C(C, B)
∼=
−→ C(C, D).

�

• Discussion. Definition 4 is the most succinct definition of products so far.
The reason it is so short is that a lot of information is contained in the words
“natural” (this amounts to an equation) and “isomorphism” (this amounts to
the existence of an inverse function and includes some equations).

Note that naturality means “naturality in C” (since A, B, and D are fixed).
Both C(C, A) × C(C, B) and C(C, D) are contravariant functors in C

24



(how?). Naturality therefore means that the following diagram commutes,
for all k : C ′ → C:

C(C, A) ×C(C, B)
ϕC //

C(k,A)×C(k,B)

��

C(C, D)

C(k,D)

��

C(C ′, A) ×C(C ′, B)
ϕ′

C // C(C ′, D).

Concretely, this means that for any f : C → A, g : C → B, and k : C ′ →
C,

ϕC(f ◦ k, g ◦ k) = ϕC(f, g) ◦ k. (2)

• Equivalence of Definitions 3+4. Given a product structure (D, ϕ) in the
sense of Definition 4, we define a product structure (D, π1, π2, 〈−,−〉) in
the sense of Definition 3 as follows: setting C = D yields an isomorphism
of hom-sets

ϕD : C(D, A) ×C(D, B)
∼=
−→ C(D, D).

Let (π1, π2) be the unique pair of morphisms such that (π1, π2) = ϕ−1(idD).
Further, for any f : C → A, g : C → B, let 〈f, g〉 = ϕC(f, g) : C → D.
We claim that (D, π1, π2, 〈−,−〉) satisfies equations (P1)–(P3).

Using the naturality equation (2) from above, as well as the definitions of
π1, π2, 〈f, g〉, we have:

ϕC(π1 ◦ 〈f, g〉, π2 ◦ 〈f, g〉)
(2)
= ϕD(π1, π2) ◦ 〈f, g〉
= idD ◦〈f, g〉
= 〈f, g〉
= ϕC(f, g)

Since ϕC is a bijection, it follows that π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g,
so we have (P1) and (P2). For (P3), we have

〈π1 ◦ h, π2 ◦ h〉 = ϕC(π1 ◦ h, π2 ◦ h)
(2)
= ϕD(π1, π2) ◦ h
= idD ◦h
= h.

Notice how naturality was used in the proof of each equation.

25

Conversely, given a product structure (D, π1, π2, 〈−,−〉) in the sense of
Definition 3, we define a natural isomorphism

ϕC : C(C, A) ×C(C, B)
∼=
−→ C(C, D)

by letting ϕC(f, g) = 〈f, g〉. This is natural by equation (P3b) (compare
this with equation (2)). To show that ϕC is a bijection, define ϕ−1(h) =
(π1 ◦ h, π2 ◦ h); the fact that ϕ and ϕ−1 are inverses then follows easily
from (P1)–(P3).

Finally, it is easily checked that the two constructions are mutually inverse,
establishing the equivalence of the two definitions. �

• Example: Products in Grp. In the category of groups, products are given
by the cartesian product of groups (with the componentwise operations).
Concretely, given groups G1, G2, their product G1 ×G2 is defined as G1 ×
G2 = {(g, h) | g ∈ G1, h ∈ G2}, with multiplication (g, h) · (g′, h′) =
(gg′, hh′) and unit eG1×G2

= (eG1
, eG2

). The projections πj : G1×G2 →
Gj are defined by πj(g1, g2) = gj , and are indeed group homomorphisms.
Given another group K, and group homomorphisms fj : K → Gj , we can
construct h : K → G1 × G2 by h(k) = (f(k), g(k)), which is again a
group homomorphism. Finally, h is the unique group homomorphism (in
fact, the unique function) with πj ◦ h = fj .

• Exercises.

– Products in Cat. Prove that the cartesian product C × D, defined in
Lecture 3, together with the obvious functors π1 : C × D → C and
π2 : C×D → D, defines a product structure on Cat.

– Products in Top. Prove that Top (or your favourite concrete category)
has products.

– Products in a poset. Characterize what it means for a poset, regarded
as a category, to have products.

– Products in a poset. Characterize what it means for a monoid, re-
garded as a category, to have products. Can a finite monoid have
products?

2.3 Lecture 9, Oct 11, 2005

• Equalizers: motivation. The Cartesian Plane was invented by Descartes.
In modern notation, it is a cartesian product R × R. But Descartes also

26



discovered that functions and relations could be visualized as subsets of the
plane. For example, the graph of the equation x2 + y2 = 1 is a circle, given
by the set

D = {(x, y) ∈ R × R | x2 + y2 = 1}.

More generally, a real number equation in two variables is of the form
f(x, y) = g(x, y), for some functions f, g : R × R → R, and its graph
is

D = {(x, y) ∈ R × R | f(x, y) = g(x, y)}.

Categorically, we have the following diagram:

D
d // R × R

f
//

g
// R,

where d : D → R×R is the inclusion map. The pair (D, d) has the property
that f ◦ d = g ◦ d. Moreover, it has the following universal property: for
any pair (E, e) of an set E and a function e : E → R × R, if f ◦ e = g ◦ e,
then there exists a unique h : E → D such that d ◦ h = e. In diagrams:

E
e

""F
FF

FF
FF

FF

∃! h

��

D
d // R × R

f
//

g
// R.

• Equalizers. Let C be a category, A, B objects, and f, g : A → B be given.
An equalizer of f, g is a pair (D, d), where D is an object and d : D → A
is a morphism, such that:

(a) f ◦ d = g ◦ d, and

(b) if (E, e) is any other pair with e : E → A and f ◦e = g ◦e, then there
exists a unique h : E → D such that d ◦ h = e.

E
e

  @
@@

@@
@@

∃! h

��

D
d // A

f
//

g
// B.

27

• Equalizers in Set. The category Set has equalizers, given by D = {a ∈ A |
f(a) = g(a)} and d : D ↪→ A the inclusion map. Proof: given any (E, e)
such that f ◦ e = g ◦ e, and let x ∈ E. We define h(x) = e(x). Is this really
an element of D? Yes, because f(h(x)) = f ◦ e(x) = g ◦ e(x) = g(h(x)).
Clearly, d ◦ h = e, since d is an inclusion map. Finally, is h unique? Let
k : E → D be another map with d◦k = e. Since d is an inclusion function,
it is monic, hence left cancelable, so h = k.

• Some properties of equalizers.

– Theorem: If (D, d) is an equalizer of f, g : A → B, then d is monic.
Proof: let C be any object and consider i, j : C → D such that
d ◦ i = d ◦ j. We must show that i = j.

C
i //

j
// D

d // A
f

//

g
// B

Let c = d◦i : C → A. Then clearly, f ◦c = f ◦d◦i = g◦d◦i = g◦c,
therefore, by the universal property of (D, d), there exists a unique
h : C → D such that d ◦ h = c. But h = i is one such choice, and
h = j is another; therefore, i = j and d is monic as desired. �

– Equalizers are unique up to isomorphism. This is trivial (or rather,
the proof is the usual one), because they are defined by a universal
property. �

• Pullbacks. Given three objects A, B, C and two morphisms f : A → C
and g : B → C, a pullback of f and g is a universal pair of arrows da :
D → A and db : D → B such that f ◦ da = g ◦ db.

More precisely: A cone over f, g is a triple (E, ea, eb) such that E is an
object, ea : E → A and eb : E → B are morphisms, and f ◦ ea = g ◦ eb.

E
eb //

ea

��

B

g

��

A
f

// C

A cone (D, da, db) is a pullback of f, g if it is universal, i.e., given any other
cone (E, ea, eb) over f, g, there exists a unique arrow h : E → D such that

28



ea = da ◦ h and eb = db ◦ h.

E
eb

''PPPPPPPPPPPPPP

ea

��
0
0
0
0
0
0
0
0
0
0
0
0
0
0

!h
  

D
db

//

da

��

B

g

��

A
f

// C

• Notation for pullbacks. If (D, da, db) is a pullback of f : A → C and
g : B → C, we sometimes write (somewhat imprecisely) D = A ×C B.

• Notation for pullbacks. In diagrams, we often use the following notation
to indicate that a given square is a pullback:

D
db //

da

��

B

g

��

A
f

// C

• Pullbacks in Set. In Set, the following is a pullback of f : A → C and
g : B → C: let

D = {(x, y) | x ∈ A, y ∈ B, f(x) = g(y)}
da(x, y) = x
db(x, y) = y

It is a simple exercise to show that this indeed satisfies the universal prop-
erty.

• Coproducts, coequalizers, pushouts, initial objects. These are the duals
of products, equalizers, pullbacks, and terminal objects, respectively.

• Coproducts in Set. A coproduct of A, B in Set is the disjoint union A+B,
together with the injections i1 : A → A + B and i2 : B → A + B. Indeed,
given any set E and a pair of functions f : A → E and g : B → E, there
exists a unique function h : A+B → E such that h◦ i1 = f and h◦ i2 = g.
Namely, the function h defined by case distinction

h(x) =

{

f(x) if x ∈ A
g(x) if x ∈ B.

29

• Exercise: Coequalizers in Set. Given f, g : B → A in Set, their coequal-
izer (D, d) can be found as follows. Let ∼ be the smallest equivalence
relation on A such that for all x ∈ B, f(x) ∼ g(x). Let D = A/ ∼, and let
d : A → D be the quotient map of this equivalence relation. Then (D, d) is
a coequalizer of f, g. Exercise: verify that this indeed defines a coequalizer.

2.4 Lecture 10, Oct 13, 2005

• Inverse limits. Suppose we are given a family {Ai}i∈N of objects, and a
morphism ai : Ai+1 → Ai for every i, as shown here:

A0 A1
a0oo A2

a1oo A3
a2oo . . .a3oo

A cone over this diagram consists of an object E and a family of morphisms
{ei}i∈N such that ei : E → Ai, and for all i, ai ◦ ei+1 = ei.

E

e0

vvmmmmmmmmmmmmmmm

e1

}}||
||

||
||

e2

��

e3

!!B
BB

BB
BB

B
...

((QQQQQQQQQQQQQQQQ

A0 A1
a0oo A2

a1oo A3
a2oo . . .a3oo

An inverse limit of the diagram is a terminal cone. In other words, a cone
(D, {di}) is an inverse limit if for any other cone (E, {di}), there exists a
unique h : E → D such that for all i, di ◦ h = ei. The diagram gets a bit
messy in this case, so I will omit the di and ei labels:

E
!h //

vvmmmmmmmmmmmmmmm

}}||
||

||
||

�� !!B
BB

BB
BB

B
...

((QQQQQQQQQQQQQQQQ D

ttiiiiiiiiiiiiiiiiiiiiiii

vvmmmmmmmmmmmmmmm

}}||
||

||
||

��

...

!!B
BB

BB
BB

BB

A0 A1
a0oo A2

a1oo A3
a2oo . . .a3oo

• Inverse limits in Set. Given a family of sets {Ai}i∈N and functions ai :
Ai+1 → Ai, their inverse limit in the category of sets can be calculated as
follows: Consider sequences x = {xi}i∈N of elements such that xi ∈ Ai for
all i. We say that such a sequence is compatible if for all i, xi = ai(xi+1).
Let D be the set of all compatible sequences. For any i, let di : D → Ai

be the function defined by di(x) = xi. We claim that (D, {di}i) defines an
inverse limit.

The details were given in class and are omitted from these notes.

30



• Arbitrary limits. We have seen that the definitions of products, equalizers,
pullbacks, and inverse limits all resemble each other. They each seem to
involve some notion of cone and a universal property. Indeed, all of these
defintions (as well as the definition of a terminal object) are special cases
of a general definition of the limit of a diagram. Before we can define this
concept precisely, we must define what a diagram is.

• Diagrams. Let D be a small category (i.e., a category whose objects form
a set, as opposed to a proper class). Let C be any category. A diagram
modeled on D in C is a functor F : D → C.

• Examples. As shown in an earlier exercise, a diagram modeled on 1 is sim-
ply an object of C. A diagram modeled on the two-object discrete category
2 is a pair of objects of C. Here are some other examples:

The category D Typical diagram modeled on D

•a •b Fa Fb

•a

i //

j
// •b Fa

Fi //

Fj

// Fb

•a

i

��
•b

j
// •c

Fa

Fi

��

Fb

Fj
// Fc

As these examples show, the category D determines the “shape” of a dia-
gram. A diagram modeled on D consists of certain objects and morphisms
of C.

• Cone over a diagram. Given a diagram F : D → C, a cone over F
consists of the following data:

(a) An object E of C, and

(b) a family of morphisms {ea}a∈|D|, where ea : E → Fa (one morphism
for each object a of D),

(c) such that for all morphisms i : a → b of D, the following triangle
commutes:

E

ea

��

eb

!!C
CC

CC
CC

C

Fa

Fi // Fb.

31

When there are many objects and morphisms in D, a cone is messy to draw,
so we usually restrict ourselves to drawing one or two objects and mor-
phisms at any given time.

• Limit cone. Let F : D → C be a diagram in C, modeled on D. A cone
(D, {da}a) over F is called a limit cone if it satisfies the following universal
property: given any other cone (E, {ea}a), there exists a unique morphism
h : D → E such that for all a ∈ |D|, the following triangle commutes:

E
!h

//

ea
  

BB
BB

BB
BB

D

da

��

Fa.

(3)

• Special cases. Various limits that we have previously defined are special
cases of this general definitions. The only thing that changes is the category
D. For example, a product is a limit of a diagram modeled on the two-object
discrete category 2. An equalizer is the limit of a diagram modeled on

•a

i //

j
// •b.

A pullback is the limit of a diagram modeled on

•a

i

��
•b

j
// •c.

An inverse limit is the limit of a diagram modeled on

•0 •1
i0oo •2

i1oo •3
i2oo . . .a3oo

And a terminal object is the limit of a diagram modeled on the empty cat-
egory. (Since the empty category has no objects, there is only one such
diagram, namely, the empty diagram. Its limit is a terminal object).

• Constant diagrams and the diagonal functor. Given a small category D,
and a fixed object A in the category C, there is always a special diagram in
C modeled on D, called the constant A diagram: the only object occuring

32



in this diagram is A, and the only morphisms are idA. For example, the
constant A diagram modeled on

•a

i

��
•b

j
// •c

is
A

idA

��

A
idA // A.

More formally, the constant A diagram is the functor F : D → C defined
by F (a) = A for all a ∈ |D|, and F (i) = idA for all i : a → b in D.

The functor ∆ : C → C
D that maps each A to its constant diagram is

called the diagonal functor.

• Definition of limits in terms of the diagonal functor. Recall that a cone
over F consists of an object E, together with a family of morphism {ea}a∈|D|

such that ea : E → Fa, and such that the following triangles commute, for
all i : a → b in D:

E

ea

��

eb

!!C
CC

CC
CC

C

Fa

Fi // Fb.

An equivalent definition is obtained by replacing the triangle by a square:

E
idE //

ea

��

E

eb

��

Fa

Fi // Fb.

Notice that this square precisely means that e : ∆E → F is a natural
transformation. We therefore obtain the following compact definition of a
cone:

Definition. A cone over the diagram F : D → C consists of a pair (E, e),
where E is an object of C, and e : ∆E → F is a natural transformation.

33

In the same style, we also obtain a definition of limit:

Definition. A limit over the diagram F : D → C consists of a pair (D, d),
where D is an object of C, and d : ∆D → F is a natural transformation,
satisfying the following universal property: for any object E and any natural
transformation e : ∆E → F , there exists a unique h : E → D such that

∆E

∆h

��

e

!!C
CC

CC
CC

C

∆D
d // F

Notice that the last diagram is a diagram of natural transformations. Spelled
out in terms of its components, this diagram is saying that for all a ∈ |D|,

E

h

��

ea

  B
BB

BB
BB

B

D
da // Fa.

This was precisely the universal property given earlier in (3).

2.5 Lecture 11, Oct 18, 2005

• Product of an indexed family of sets.

• Products and equalizers imply all limits.

34


