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1 Induction and recursion

1.1 Induction

Let X be a set, and letPX = {A | A ⊆ X} be the powerset ofX . Let
Φ : PX → PX be a monotone operation, i.e., for allA,B ∈ PX , we have
A ⊆ B impliesΦ(A) ⊆ Φ(B).

Definition. We say that a setA ⊆ X is closed underΦ if Φ(A) ⊆ A.

Proposition 1. (a) Let (Ai)i∈I be a family of sets such that eachAi is closed
underΦ. Then the intersectionA =

⋂
i∈I Ai is also closed underΦ.

(b) If B ⊆ X is any set, then there exists a smallest subsetB ⊆ X such that
B ⊆ B andB is closed underΦ.

Proof. (a) Let i ∈ I be arbitrary. By hypothesis, we have thatAi is closed
underΦ, soΦ(Ai) ⊆ Ai. SinceA ⊆ Ai for all i, we haveΦ(A) ⊆ Φ(Ai)
by monotonicity ofΦ. HenceΦ(A) ⊆ Ai. Sincei was arbitrary, it follows
thatΦ(A) ⊆

⋂
i∈I Ai, thereforeΦ(A) ⊆ A andA is closed underΦ.

(b) This is a trivial consequence of (a). LetB be the intersection of all sets
A ∈ PX such thatB ⊆ A andA is closed underΦ. By (a),B is itself
closed underΦ, and it also containsA. Since it is the intersection of all such
sets, it is therefore the smallest with those properties. �

Corollary 2 (Induction principle). LetB ⊆ X be defined as in Proposition 1, i.e.,
B is the smallest subset ofX that containsB and is closed underΦ. Suppose that
P is a property of elements ofX . Further suppose that

(a) for all x ∈ B, the propertyP (x) holds (base case), and

(b) the set{x | P (x)} is closed underΦ (induction step).

Then the propertyP (x) holds for allx ∈ B.
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Proof. LetA = {x | P (x)}. By the base case,B ⊆ A, and by the induction step,
A is closed underΦ. SinceB was the smallest set with these two properties, it
follows thatB ⊆ A. �

Example3. LetX be a set,0 ∈ X be an element, ands : X → X a one-to-one
function whose image does not include0. ForA ⊆ X , let Φ(A) = {s(x) | x ∈
A}. Then a setA is closed underΦ if and only if for allx ∈ A, we haves(x) ∈ A.
We also say that the setA is closed unders in this case.

LetN be the smallest subset ofX containing0 and closed unders. In this case, the
induction principle asserts the following: ifP is a property such thatP (0) holds
(base case) and such that for allx, if P (x) holds thenP (s(x)) holds (induction
step), then it follows thatP (x) holds for allx ∈ N .

This is just the usual induction principle on the natural numbers; note thatN as
defined above is isomorphic to the natural numbers. In fact, this is how the natural
number are defined from the axiom of infinity (the axiom of infinity in set theory
asserts that there exists an infinite set; a setX is by definition infinite if there
exists a one-to-one functions : X → X that is not onto. By taking0 to be some
element ofX not in the range ofs, one arrives at the above definition ofN ).

Example4. Let X be a set, letB ⊆ X be a subset, and letf : X → X and
g : X × X → X be functions. DefineΦ(A) = {f(x) | x ∈ A} ∪ {g(x, y) |
x, y ∈ A}. Then a setA is closed underΦ if and only if for all x, y ∈ A, we have
f(x) ∈ A andg(x, y) ∈ A. We also say thatA is closed underf andg in this
case.

Let B be the smallest subset ofX containingB and closed underf andg. In
this case, the induction principle asserts that if some propertyP is true of all the
elements ofB (base case), and moreover, if for all elementsx, y satisfyingP , it
is also true thatf(x) andg(x, y) satisfyP (induction step), then it follows thatP
is true for all elements ofB.

If some property of subsetsA of X can be expressed in the form “A is closed
underΦ”, for some monotone operationΦ : PX → PX , then we say that it is
a closure property.

1.2 Recursion

Let us consider again the situation from Example 4, i.e.:

• X is a set,
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• f : X → X andg : X ×X → X are functions.

For a given subsetB ⊆ X , we know that there exists a smallest setB that contains
B and is closed underf andg.

We are now interested in the question of how one can define functions on the set
B. In particular, we would like to define such functions by recursion. We have the
following recursion principle:

Theorem 5 (Recursion principle). Assume thatB is defined as in the preceding
paragraph. Moreover, assume that the functionsf : X → X andg : X×X → X

are one-to-one and have disjoint ranges, and that their ranges are disjoint fromB.
LetS be some set and let there be given three functionsϕ : B → S, ψf : S → S,
andψg : S × S → S. Then there exists a unique functionh : B → S such that:

(a) for all x ∈ B, h(x) = ϕ(x);

(b) for all x ∈ B, h(f(x)) = ψf (h(x)); and

(c) for all x, y ∈ B, h(g(x, y)) = ψg(h(x), h(y)).

Proof. Uniqueness is easy, because we can prove it by induction: suppose thath
andh′ are two such functions. Then use induction to prove thath(x) = h′(x) for
all x ∈ B. Both the base case and the induction step are trivial.

The difficult part of this proof is existence of a functionh having the stated proper-
ties. We prove this by first considering an analogous property for partial functions.
We say that a partial functionk : B ⇀ S is consistentif it satisfies the following
partial version of properties (a)–(c) above:

(a’) for all x ∈ B, if k(x) is defined, thenk(x) = ϕ(x);

(b’) for all x ∈ B, if k(f(x)) is defined, thenk(x) is defined, andk(f(x)) =
ψf (k(x)); and

(c’) for all x, y ∈ B, if k(g(x, y)) is defined, thenk(x) andk(y) are defined,
andk(g(x, y)) = ψg(k(x), k(y)).

We then prove the following claims (the details were done in class):

(1) There exists a consistent partial functionk. (Proof: the empty partial func-
tion k = ∅ will do.)
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(2) If k andk′ are consistent partial functions, then for allx ∈ B, if k(x) and
k′(x) are both defined, thenk(x) = k′(x). (Proof: by induction).

(3) If (ki)i∈I is any family of consistent partial functions, then
⋃

i∈I ki is a
consistent partial function. (Proof: the fact that it’s a partial function follows
from (2). The proof of its consistency is trivial).

(4) Everyx ∈ B is in the domain of some consistent partial functionk. (Proof:
by induction. Base case: Forx ∈ B, we can choosek : B ⇀ S defined
by k(x) = ϕ(x) if x ∈ B, andk(x) = undefined otherwise. Clearly
this satisfies (a’); the fact that it also satisfies (b’) and (c’) follows from the
assumption that the ranges ofψf andψg are disjoint fromB. For the first
induction step, assume thatx is in the domain ofk; we want show thatf(x)
is in the domain of some consistentk′. We definek′(y) = k(y) if y 6= f(x),
andk′(f(x)) = ψf (k(x)) otherwise. The fact that this satisfies (a’)–(c’)
hinges on the fact that the ranges off, g are disjoint from each other and
fromB, and thatf is one-to-one. The details are left to the reader).

Now let k be the union ofall consistent partial functionsk′B ⇀ S. By (3), k is
consistent, and by (4),k is total. It follows thatk satisfies (a)–(c), which proves
the theorem. �

An analogous theorem of course holds for any number of functionsf1, . . . , fn of
any arity, instead off, g.

2 The language of sentential logic

2.1 Well-formed formulas

We define thealphabet of sentential logic to be the set consisting of the following
symbols:

¬ ∧ ∨ → ↔ ⊤ ⊥ (connectives)
( ) (parentheses)
A1 A2 A3 . . . (sentence symbols)

Notice that there are infinitely many distinct sentence symbols. Each of them
counts as an individual, indivisible symbol. The connectives fall into three classes:
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binary connectives (∧, ∨, →, and↔), unary connectives (¬), and nullary con-
nectives, also known as logical constants (⊤ and⊥). We often write� to denote
any of the binary connectives.

Let A∗ denote the set of finite strings over the alphabetA. If α andβ are strings,
then we denote their concatenation byαβ.

Definition 6. The setW ⊆ A∗ of well-formed formulas (wff’s) of sentential
logic is the smallest subset ofA∗ such that

1. An ∈ W , for all n. Also⊤,⊥ ∈ W .

2. If α ∈ W then(¬α) ∈ W .

3. If α, β ∈ W then(α � β) ∈ W , where� ∈ {∧,∨,→,↔}.

The formulasAn, ⊤, and⊥ are calledatomic formulas. All other well-formed
formulas are calledcomposite formulas.

Example7. Which of the following are well-formed formulas?

1.(A1 ∧A2) 2.((A3)) 3.(A4 ∨A7)→A6

4.(((⊤∧A13)∨A1)→⊥) 5.(¬A3 →A3)

Answer: only 1. and 4. are well-formed.

Remark. The existence of a “smallest” setW satisfying conditions 1–3 is of
course guaranteed by the fact that conditions 1–3 are closure properties in the
sense of Section 1.1.

2.2 Induction for well-formed formulas

From Section 1.1, we get an induction principle for well-formed formulas. Since
we will use it a lot, let’s state it explicitly:

Theorem 8 (Induction Principle for well-formed formulas). To prove that a cer-
tain propertyP holds for all well-formed formulasα, it suffices to show that

1. P holds for all atomic formulasα.

2. If P holds for a well-formed formulaβ, then also for(¬β).
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3. If P holds for well-formed formulasβ andγ, then also for(β � γ), for
each binary connective�. �

We now give some examples of proofs by induction on well-formed formulas.

Example9. Every well-formed formulaα has an equal number of left and right
parentheses.

Proof. By induction on the well-formed formulaα.

1. Base case:Supposeα is atomic. Then it has neither left nor right parenthe-
ses, and thus an equal number of each.

2. Induction step for negation:Supposeα = (¬β) for some well-formed
formulaβ. By the induction hypothesis, we may assume thatβ has an equal
number of left and right parentheses, say,n of each. Thenα = (¬ β) has
n+ 1 left andn+ 1 right parentheses.

3. Induction step for binary connectives:Let � be a binary connective. Sup-
poseα = (β � γ) for some well-formed formulasβ andγ. By the in-
duction hypothesis, we may assume thatβ andγ each have an equal num-
ber of left and right parentheses, say,n andm of each, respectively. Then
α = wbinβγ hasn+m+1 left parentheses andn+m+1 right parentheses.

By induction, this proves the claim. �

As you can see in this example, a proof by induction on well-formed formulas
looks very much like a case distinction: Case 1:α is atomic, cases 2 and 3:
α is composite. The only difference to a case distinction is the presence of an
induction hypothesis: ifα is composite, then we may already assume that the
induction hypothesis holds for its immediate subformulas.

To show that a case distinction is really a special case of a proof by induction,
consider the next example, in which the induction hypothesis is actually never
used!

Example10. A well-formed formulaα does never start with the symbol¬.

Proof. By induction on the well-formed formulaα.

1. Base case:If α is atomic, then it is eitherAn or ⊤ or ⊥. In neither case
does it start with¬.
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2. Induction step for negation:Supposeα = (¬β) for some well-formed
formulaβ. Thenα starts with( and not with¬.

3. Induction step for binary connectives:Let � be a binary connective. Sup-
poseα = (β � γ) for some well-formed formulasβ andγ. As in the
previous case,α starts with( and not with¬. �

We give a third example of an induction proof, to establish a property of well-
formed formulas that we will need later. Here, a stringβ ∈ A∗ is called aninitial
segment of a stringα ∈ A∗ if there exists someγ ∈ A∗ such thatα = βγ. We
say thatβ is a proper initial segment of α if it is an initial segment, and ifβ is
neither equal toα nor to the empty string. We say that a string contains an excess
of left parentheses if it contains strictly more left than right parentheses.

Example11. Every proper initial segment of a well-formed formulaα contains
an excess of left parentheses.

Proof. By induction on the well-formed formulaα.

1. Base case:If α is atomic, then it has length 1 and thus it has no proper
initial segments. Thus, there is nothing to show.

2. Induction step for negation:Supposeα = (¬β) for some well-formed
formulaβ. Then the proper initial segments ofα are:

(,
(¬,
(¬ β′ whereβ′ is a proper initial segment ofβ, and
(¬ β.

In the first two cases, there is one left parenthesis and zero right ones. Thus,
there is an excess of left parentheses. In the third case,β′ contains an excess
of left parentheses by induction hypothesis. Adding one more left parenthe-
sis certainly leaves the left in the majority. In the last case, β contains an
equal number of left and right parentheses by Example 9. Adding one more
left parenthesis creates, again, a majority of left parentheses.

3. Induction step for binary connectives:This is very similar to the previous
case. �

Corollary 12. No proper initial segment of a well-formed formula is a well-
formed formula.
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Proof. This is an easy consequence of Examples 9 and 11: Every properinitial
segment of a well-formed formula contains an excess of left parentheses, and thus
cannot be a well-formed formula. �

2.3 An alternative definition of well-formed formulas

Instead of defining the set of well-formed formulas “from above”, as the smallest
set satisfying a certain closure property, we could have alternatively defined it
“from below”, by starting from the atoms and iteratively defining more and more
formulas. We will now give this alternative definition and prove that they are
equivalent.

Definition. Let W0 = {⊤,⊥,A1,A2,A3, . . .} be the set of atomic formulas.
For everyn = 0, 1, 2, . . ., define

Wn+1 := Wn ∪ {(¬α) | α ∈ Wn}
∪{(α∧ β),(α∨ β),(α→ β),(α↔ β) | α, β ∈ Wn}.

We define the setW∗ =
⋃

∞

n=0
Wn.

Proposition 13. The two definitions of well-formed formulas coincides, i.e., W =
W∗.

Proof. First, note thatWn ⊆ Wn+1, and by a simple induction on the natural
numbers,Wn ⊆ Wm whenevern 6 m.

To prove the proposition, we first show thatW ⊆ W∗. SinceW is the smallest
inductive set, it will suffices to prove thatW∗ is inductive. 1.: If α is atomic,
thenα ∈ W0, henceα ∈ W∗. 2.: Supposeβ ∈ W∗. Thenβ ∈ Wn, for
somen. It follows from the definition ofWn+1 that(¬β) ∈ Wn+1, and thus
(¬β) ∈ W∗. 3.: Supposeβ, γ ∈ W∗. Thenβ ∈ Wn andγ ∈ Wm for some
n,m. Assume without loss of generality thatn 6 m. In this case,β, γ ∈ Wm,
and thus(β � γ) ∈ Wm+1. It follows that(β � γ) ∈ W∗. This proves thatW∗

is inductive, and thus thatW ⊆ W∗.

Conversely, we will show thatW∗ ⊆ W . It suffices to show thatWn ⊆ W , for
all n = 0, 1, 2, . . .. This is easy to show by induction on the natural numbern. �

Remark14. We define therank of a well-formed formulaα to be the leastn such
thatα ∈ Wn. Thus, the rank of a formula is the number of nesting levels ofits
unary and binary connectives.
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2.4 Unique readability

We can think of the set of well-formed formulas as an algebra with one unary and
four binary operations. On the setW , consider the following five operations:

F¬ : W → W : α 7→ (¬α)
F∧ : W ×W → W : 〈α, β〉 7→ (α∧ β)
F∨ : W ×W → W : 〈α, β〉 7→ (α∨ β)
F→ : W ×W → W : 〈α, β〉 7→ (α→ β)
F↔ : W ×W → W : 〈α, β〉 7→ (α↔ β)

The following theorem ensures that every well-formed formula can be read in a
unique way. In practical terms, this means that we have put enough parentheses
into our definition of well-formed formulas to avoid any ambiguities.

Theorem 15(Unique Readability).

1. Each of the functionsF¬, F∧, F∨, F→, andF↔ is one-to-one.

2. The ranges of these five functions are pairwise disjoint.

3. The ranges of these five functions are all disjoint fromW0, the set of atomic
formulas.

Proof. 1. We show, for instance, that the functionF∧ is one-to-one. All the
other cases are similar. So assume thatα, β, γ, andδ are well-formed
formulas, and that(α∧ β) = (γ ∧ δ). Then, by deleting the first symbol
of the strings on the left-hand-side and right-hand-side, it follows that

α∧ β) = γ ∧ δ).

Then eitherα = γ, or α is a proper initial segment ofγ, or γ is a proper
initial segment ofα. Becauseα andγ are well-formed formulas, it follows
from Corollary 12 that the last two cases are impossible. Henceα = γ. By
deletingα from the beginning of each string in our equation, we get

∧ β) = ∧ δ),

and finally, by deleting the first and last symbol,

β = δ.

It follows thatF∧ is one-to-one.
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2. We first show that the ranges ofF∧ andF∨ are disjoint. The argument is
the same for the other pairs of binary connectives. So suppose thatα, β, γ,
andδ are well-formed formulas, and that(α∧ β) = (γ ∨ δ). By deleting
the first symbol, we get

α∧ β) = γ ∨ δ),

and as before, we can use Corollary 12 to conclude thatα = γ. Hence, it
follows that

∧ β) = ∨ δ).

However, this is clearly a contradiction, since these two strings start with a
different symbol.

We now show that the ranges ofF¬ andF� are disjoint, where� is a binary
connective. So suppose thatα, β, andγ are well-formed formulas, and that
(¬α) = (β � γ). As before, we delete the first symbol to get

¬α) = β � γ).

Thus, the well-formed formulaβ begins with the symbol “¬”, contradicting
Example 10.

3. We want to show that the images of the five functions are disjoint fromW0.
From the definition of the five functions, it is clear that ifα is in the image
of any of these functions, then it starts with the symbol “(”. On the other
hand, none of the elements ofW0 = {⊤,⊥,A1,A2,A3, . . .} start with
the symbol “(”. Thus, the claim follows. �

The Unique Readability Theorem states that a well-formed formula cannot be
atomic and composite at the same time. It also states that if aformula is composite,
then in a unique way. This is an important property of our syntax: every well-
formed formula can beparsedin a unique way. Notice that this would not have
been true if we had omitted parentheses. For instance, the formula¬α∧β, which
is not well-formed according to our definition, is ambiguous: it could be parsed
either as((¬α)∧ β) or as(¬(α∧ β)). If we had chosen to allow this more
liberal syntax, then we would have had to introduceprecedence rules, i.e., rules
that determine which connectives bind stronger than others, which ones associate
to the left and which ones to the right, and so on. This would have made our
formal treatment much more complicated.
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2.5 Recursion for well-formed formulas

The unique readability theorem precisely ensures that the functionsF¬, . . . , F↔

and the setW0 satisfy the hypothesis of Theorem 16. We therefore have the
following recursion principle for defining functions on well-formed formulas:

Theorem 16(Recursion Principle). Recall thatW0 is the set of atomic formulas.
Suppose we are given a setV , together with functions

H@ : W0 → V,

H¬ : V → V, and
H� : V × V → V for each binary connective�.

Then there exists a unique functionf : W → V such that for allα, β ∈ W and
for all binary connectives�,

f(α) = H@(α), if α is atomic,
f((¬α)) = H¬(f(α)),
f((α � β)) = H�(f(α), f(β)).

We give some examples of definitions by recursion.

Example17. The rank of a well-formed formulaα, in symbolsr(α), is defined
recursively as:

r(α) = 0, if α is atomic,
r((¬α)) = r(α) + 1
r((α � β)) = max{r(α), r(β)} + 1.

Verify that this definition fits the schema of the general Recursion Principle. What
are the functionsH@,H¬, andH�? What isV ?

Notice that the notion of rank defined in the previous examplecoincides with the
notion of rank defined in Remark 14. It is the “nesting depth” of a formula.

Example18. The functionℓ : W → N, is defined recursively as:

ℓ(α) = 1, if α is atomic,
ℓ((¬α)) = ℓ(α) + 1

ℓ((α � β)) = ℓ(α) + ℓ(β) + 1.

What does the functionℓ represent?
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Example19. We define a function sub: W → PW to compute the set of sub-
formulas of a well-formed formulaα. It is defined recursively as

sub(α) = {α}, if α is atomic,
sub((¬α)) = sub(α) ∪ {(¬α)}
sub((α � β)) = sub(α) ∪ sub(β) ∪ {(α � β)}.

We say thatβ is asubformula of α if β ∈ sub(α).

Example20. The set offree sentence symbols of a well-formed formulaα, de-
noted FS(α), is defined recursively as follows:

FS(An) = {An},
FS(⊤) = FS(⊥) = ∅,
FS((¬α)) = FS(α)
FS((α � β)) = FS(α) ∪ FS(β).

2.6 Informal precedence rules

Having established unique readability and the recursion principle for well-formed
formulas, we now know that the formal language of sententiallogic is unambigu-
ous. Secure in this knowledge, we will now relax the syntactic rules as far as our
informal treatment is concerned. This means that, when we write formulas from
now on, we will take more liberties with parentheses.

Convention (Informal precedence rules). From now on, when we write formu-
las, we will sometimes omit certain parentheses. It is understood that the formulas
that we write are only shorthands, and that they denote well-formed formulas in
the formal sense. The following rules determine how missingparentheses are to
be filled in:

1. Negation takes precedence over binary connectives. Thus, ¬α ∧ β means
((¬α)∧ β).

2. “∧” and “∨” take precedence over “→” and “↔”. Thus,α ∧ β → γ ∧ δ

means((α∧ β)→ (γ ∧ δ)).

3. If we mix “∧” with “ ∨”, or “→” with “ ↔”, then we will still write paren-
theses.

4. All binary connectives associate to the right, so thatα∧β ∧ γ means(α∧

(β ∧ γ)), andα→ β→ γ means(α→ (β→ γ)).

12


