Math 2030, Matrix Theory and Linear Algebra I, Fall 2011 Final Exam, December 13, 2011

FIRST NAME:	LAST NAME:	STUDENT ID:		
CLONATURE				
SIGNATURE:				

Part I: True or false questions

Decide whether each statement is true or false. If it is false, give a reason. (2 points each)

Problem 1. If A is diagonalizable then A^{-1} is diagonalizable.

Problem 2. For a linear system Ax = b where the entries of A are real numbers and A is 17×17 , it's possible for the system to have exactly seventeen solutions.

Problem 3. The sum of two elementary matrices of the same size is an elementary matrix.

Problem 4. If A is an $n \times n$ -matrix then det(kA) = k det(A).

Problem 5. If A is a 2×2 square matrix with integer entries, then det A is an integer.

Problem 6. If A is an $n \times n$ -matrix, then $det(AA^TA) = (det A)^3$.

Problem 7. Similar matrices have the same eigenvalues.

Problem 8. For all non-zero vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, one has $(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w})$.

Problem 9. If v_1, v_2 are two non-zero vectors in \mathbb{R}^3 , span $\{v_1, v_2\}$ is a plane through the origin.

Problem 10. A linearly independent set of vectors in \mathbb{R}^n has at least *n* elements.

Problem 11. Let A and B be 2×2 -matrices. If AB = 0 then A = 0 or B = 0.

Problem 12. If A is an invertible $n \times n$ -matrix, then the equation Ax = b is consistent for each $b \in \mathbb{R}^n$.

Problem 13. Let A be an $n \times n$ triangular matrix with n distinct eigenvalues. Then the determinant of A is equal to the product of its eigenvalues.

Problem 14. Every $n \times n$ -matrix A with real entries has at least one real eigenvalue.

Problem 15. If A is $n \times n$ and diagonalizable, then A has n distinct eigenvalues.

Problem 16. The vectors
$$\mathbf{u} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 0 \\ 4 \\ 0 \end{bmatrix}$ are linearly independent over \mathbb{Z}_5 .

Part II: Multiple choice questions

Please <u>circle the letter</u> (a), (b), (c), or (d) corresponding to the correct answer for each question. (2 points each)

Problem 1. For all non-zero vectors \mathbf{v} in \mathbb{R}^n , the non-zero vector \mathbf{u} is orthogonal to:

(a) $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})$ (b) $\mathbf{v} - \operatorname{proj}_{\mathbf{u}}(\mathbf{v})$ (c) $\mathbf{v} + \operatorname{proj}_{\mathbf{u}}(\mathbf{v})$ (d) $\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$

Problem 2. Which of the following expresses the fact that the vectors \mathbf{u} and \mathbf{v} have the same length? (a) $\mathbf{u} \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{v}$ (b) $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u}\| - \|\mathbf{v}\|$ (c) $\frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ (d) $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u}\| + \|\mathbf{v}\|$

Problem 3. The distance between the two planes 2x - y + z = 1 and -4x + 2y - 2z = 1 is

(a)
$$\frac{3}{2\sqrt{6}}$$
 (b) $\frac{3}{4}$ (c) $\frac{9}{24}$ (d) $\frac{3}{\sqrt{6}}$

Problem 4. The system

has

- (a) only a trivial solution
- (b) the unique solution x = 4, y = 31, z = 11
- (c) no solution
- (d) an infinite number of solutions

Problem 5. Which of the following functions $f : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation?

(a) $f\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ x \end{bmatrix}$ (b) $f\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{\sqrt{x^2 + y^2}} \begin{bmatrix} x \\ y \end{bmatrix}$ (c) $f\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+1 \\ y+1 \end{bmatrix}$ (d) $f\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x^2 + y^2 \\ 2xy \end{bmatrix}$ **Problem 6.** If $\mathbf{w} = \begin{bmatrix} 1\\2\\r\\s \end{bmatrix}$ is a linear combination of $\mathbf{v} = \begin{bmatrix} 1\\1\\3\\1 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 1\\0\\5\\-1 \end{bmatrix}$ then *r* and *s* must be, respectively, (a) 3,1 (b) 2,0 (c) 1,3 (d) 0,-2

Problem 7. If A and B are $n \times n$ symmetric matrices, which of the following is not necessarily symmetric? (a) $-2B^T$ (b) A + B (c) AB (d) A^TA

Problem 8. If A and B are $n \times n$ -matrices and if det A = 2, det B = 3, then det $(AB^{-1}) =$ (a) $(-1)^n \frac{2}{3}$ (b) $\frac{2}{3}$ (c) $(-1)^n 6$ (d) 6 **Problem 9.** Assume that a certain 5×5 -matrix has two eigenvalues, and that the eigenspace corresponding to one of them is 3-dimensional. What must the dimension of the eigenspace of the second eigenvalue be if the matrix is diagonalizable?

(a) 5 (b) 3 (c) 4 (d) 2

Problem 10. A vector in the null space of
$$A = \begin{bmatrix} 1 & 1 & -2 & -1 \\ -1 & 4 & -3 & 1 \\ 0 & 7 & 1 & -8 \end{bmatrix}$$
 is:
(a) $\begin{bmatrix} 1 \\ -1 \\ 2 \\ -2 \end{bmatrix}$ (b) $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ (c) $\begin{bmatrix} 2 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 \\ 2 \\ -1 \\ 3 \end{bmatrix}$

Problem 11. If A is a non-zero 4×7 -matrix, then possible values for nullity(A) are:

(a) $6, 5, 4, 3, 2$	(b) $6, 5, 4, 3$	(c) $7, 6, 5, 4, 3$	(d) $4, 3, 2, 1$
---------------------	------------------	---------------------	------------------

Problem 12. Consider the basis $\mathcal{B} = \left\{ \mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$ of \mathbb{R}^3 , and consider the vector $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$. Determine the coefficients c_1, c_2, c_3 such that $\mathbf{v} = c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + c_3\mathbf{u}_3$. Which of the following is true?

(a)
$$c_1 = 0$$
 (b) $c_1 = 2$ (c) $c_1 = 1$ (d) $c_1 = -1$

Problem 13. Which of the following vectors is in the column space of the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix}$? (a) $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ (b) $\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ (c) $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ (d) $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

Problem 14. Let
$$T\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 - x_3 \\ x_1 - x_2 + x_3 \end{bmatrix}$$
 and $S\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 - 2y_2 \\ y_1 + y_2 \end{bmatrix}$. Then $[S \circ T] =$
(a) $\begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 3 & -3 \\ 2 & 0 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -1 & 2 \end{bmatrix}$

Problem 15. Let $\mathbf{n} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. While of the following subsets of \mathbb{R}^3 is a subspace of \mathbb{R}^3 ?

- (a) $\{\mathbf{v} \mid \mathbf{v} + \mathbf{n} = \mathbf{0}\}$
- (b) $\{\mathbf{v} \mid \mathbf{v} \cdot \mathbf{n} = 0\}$
- (c) $\{\mathbf{v} \mid \mathbf{v} \cdot \mathbf{v} = 1\}$
- (d) $\{\mathbf{v} \mid \mathbf{v} \cdot \mathbf{n} = 1\}$

Problem 16. Which of the following is a basis of \mathbb{R}^3 ?

(a)
$$\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 0\\4\\1 \end{bmatrix} \right\}$$

(b) $\left\{ \begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\1\\1 \end{bmatrix} \right\}$
(c) $\left\{ \begin{bmatrix} 0\\-4\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\4\\1\\1 \end{bmatrix}, \begin{bmatrix} 4\\4\\5 \end{bmatrix} \right\}$
(d) $\left\{ \begin{bmatrix} 2\\1\\3\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \right\}$

Part III: Detailed answer questions

(6 points each)

Problem 1. (a) Let $\mathbf{u} = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 3 \end{bmatrix}$. Find a unit vector in the direction of $-\mathbf{u}$.

(b) The planes 2x + y - z = 2 and x + y + z = 3 intersect in a line. Find the vector form equation of this line.

(c) Let
$$\mathbf{u} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$$
. Describe all vectors \mathbf{v} such that $\mathbf{u} \cdot \mathbf{v} = 1$. Is this a vector subspace of \mathbb{R}^3 ?

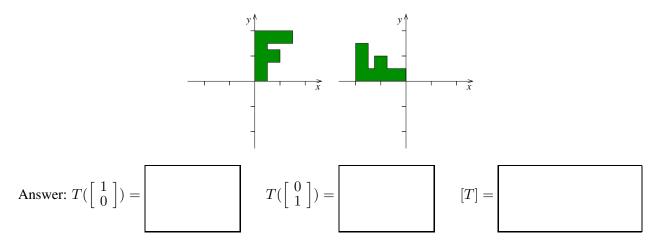
Problem 2. Find the distance from the point (2, 2, 2) to the plane p with equation x + y - z = 0.

Problem 3. Solve the following system of equations using Gauss-Jordan elimination.

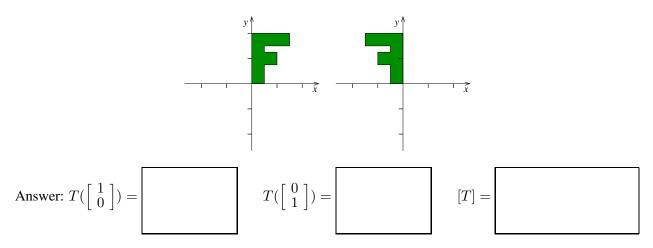
-2x	+	y	+	z	=	4
x	_	2y	+	z	=	1
x	+	y	_	2z	=	-5

Problem 4. For each of the following two linear functions $T : \mathbb{R}^2 \to \mathbb{R}^2$, find $T(\begin{bmatrix} 1\\0 \end{bmatrix})$ and $T(\begin{bmatrix} 0\\1 \end{bmatrix})$, and give the standard matrix [T] of T.

(a) T is a rotation by 90 degrees, as shown in the illustration:



(b) T is a reflection about the y-axis:



Problem 5. Find the inverse of $A = \begin{bmatrix} 3 & 2 & -2 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$ if it exists.

Problem 6. Compute the determinant of *A*.

$$A = \begin{bmatrix} 1 & 0 & 3 & -1 \\ 1 & 0 & 2 & 0 \\ 2 & -2 & 1 & 4 \\ 2 & 0 & 1 & 0 \end{bmatrix}$$

Problem 7. Find bases for col(A) and null(A) if

$$A = \begin{bmatrix} 1 & 3 & -1 \\ 1 & 2 & 0 \\ 2 & 5 & -1 \end{bmatrix}$$

Problem 8. Determine whether A is diagonalizable and, if so, find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

$$A = \begin{bmatrix} 5 & 4 & -4 \\ -8 & -7 & 8 \\ 0 & 0 & 1 \end{bmatrix}$$

Extra page for rough work.