Math 2030, Matrix Theory and Linear Algebra I, Fall 2011

Final Exam, December 13, 2011

FIRST NAME: \qquad LAST NAME: \qquad STUDENT ID: \qquad

SIGNATURE:

Part I: True or false questions

Decide whether each statement is true or false. If it is false, give a reason. (2 points each)
Problem 1. If A is diagonalizable then A^{-1} is diagonalizable.

Problem 2. For a linear system $A x=b$ where the entries of A are real numbers and A is 17×17, it's possible for the system to have exactly seventeen solutions.

Problem 3. The sum of two elementary matrices of the same size is an elementary matrix.

Problem 4. If A is an $n \times n$-matrix then $\operatorname{det}(k A)=k \operatorname{det}(A)$.

Problem 5. If A is a 2×2 square matrix with integer entries, then $\operatorname{det} A$ is an integer.

Problem 6. If A is an $n \times n$-matrix, then $\operatorname{det}\left(A A^{T} A\right)=(\operatorname{det} A)^{3}$.

Problem 7. Similar matrices have the same eigenvalues.

Problem 8. For all non-zero vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$, one has $(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot(\mathbf{v} \cdot \mathbf{w})$.

Problem 9. If $\mathbf{v}_{1}, \mathbf{v}_{2}$ are two non-zero vectors in $\mathbb{R}^{3}, \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a plane through the origin.

Problem 10. A linearly independent set of vectors in \mathbb{R}^{n} has at least n elements.

Problem 11. Let A and B be 2×2-matrices. If $A B=0$ then $A=0$ or $B=0$.

Problem 12. If A is an invertible $n \times n$-matrix, then the equation $A x=b$ is consistent for each $b \in \mathbb{R}^{n}$.

Problem 13. Let A be an $n \times n$ triangular matrix with n distinct eigenvalues. Then the determinant of A is equal to the product of its eigenvalues.

Problem 14. Every $n \times n$-matrix A with real entries has at least one real eigenvalue.

Problem 15. If A is $n \times n$ and diagonalizable, then A has n distinct eigenvalues.

Problem 16. The vectors $\mathbf{u}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$, and $\mathbf{w}=\left[\begin{array}{l}0 \\ 4 \\ 0\end{array}\right]$ are linearly independent over \mathbb{Z}_{5}.

Part II: Multiple choice questions

Please circle the letter (a), (b), (c), or (d) corresponding to the correct answer for each question. (2 points each)

Problem 1. For all non-zero vectors \mathbf{v} in \mathbb{R}^{n}, the non-zero vector \mathbf{u} is orthogonal to:
(a) $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})$
(b) $\mathbf{v}-\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$
(c) $\mathbf{v}+\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$
(d) $\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$

Problem 2. Which of the following expresses the fact that the vectors \mathbf{u} and \mathbf{v} have the same length?
(a) $\mathbf{u} \cdot \mathbf{u}=\mathbf{v} \cdot \mathbf{v}$
(b) $\|\mathbf{u}+\mathbf{v}\|=\|\mathbf{u}\|-\|\mathbf{v}\|$
(c) $\frac{\mathbf{u}}{\|\mathbf{u}\|}=\frac{\mathbf{v}}{\|\mathbf{v}\|}$
(d) $\|\mathbf{u}+\mathbf{v}\|=\|\mathbf{u}\|+\|\mathbf{v}\|$

Problem 3. The distance between the two planes $2 x-y+z=1$ and $-4 x+2 y-2 z=1$ is
(a) $\frac{3}{2 \sqrt{6}}$
(b) $\frac{3}{4}$
(c) $\frac{9}{24}$
(d) $\frac{3}{\sqrt{6}}$

Problem 4. The system

$$
\begin{array}{r}
5 x-y+z=0 \\
4 x-3 y+7 z=0
\end{array}
$$

has
(a) only a trivial solution
(b) the unique solution $x=4, y=31, z=11$
(c) no solution
(d) an infinite number of solutions

Problem 5. Which of the following functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation?
(a) $f\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ x\end{array}\right]$
(b) $f\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{\sqrt{x^{2}+y^{2}}}\left[\begin{array}{l}x \\ y\end{array}\right]$
(c) $f\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x+1 \\ y+1\end{array}\right]$
(d) $f\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x^{2}+y^{2} \\ 2 x y\end{array}\right]$

Problem 6. If $\mathbf{w}=\left[\begin{array}{l}1 \\ 2 \\ r \\ s\end{array}\right]$ is a linear combination of $\mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ 3 \\ 1\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{c}1 \\ 0 \\ 5 \\ -1\end{array}\right]$ then r and s must be, respectively,
(a) 3,1
(b) 2,0
(c) 1,3
(d) $0,-2$

Problem 7. If A and B are $n \times n$ symmetric matrices, which of the following is not necessarily symmetric?
(a) $-2 B^{T}$
(b) $A+B$
(c) $A B$
(d) $A^{T} A$

Problem 8. If A and B are $n \times n$-matrices and if $\operatorname{det} A=2, \operatorname{det} B=3$, then $\operatorname{det}\left(A B^{-1}\right)=$
(a) $(-1)^{n} \frac{2}{3}$
(b) $\frac{2}{3}$
(c) $(-1)^{n} 6$
(d) 6

Problem 9. Assume that a certain 5×5-matrix has two eigenvalues, and that the eigenspace corresponding to one of them is 3 -dimensional. What must the dimension of the eigenspace of the second eigenvalue be if the matrix is diagonalizable?
(a) 5
(b) 3
(c) 4
(d) 2

Problem 10. A vector in the null space of $A=\left[\begin{array}{cccc}1 & 1 & -2 & -1 \\ -1 & 4 & -3 & 1 \\ 0 & 7 & 1 & -8\end{array}\right]$ is:
(a) $\left[\begin{array}{c}1 \\ -1 \\ 2 \\ -2\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 3\end{array}\right]$

Problem 11. If A is a non-zero 4×7-matrix, then possible values for nullity (A) are:
(a) $6,5,4,3,2$
(b) $6,5,4,3$
(c) $7,6,5,4,3$
(d) $4,3,2,1$

Problem 12. Consider the basis $\mathcal{B}=\left\{\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ of \mathbb{R}^{3}, and consider the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$. Determine the coefficients c_{1}, c_{2}, c_{3} such that $\mathbf{v}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+c_{3} \mathbf{u}_{3}$. Which of the following is true?
(a) $c_{1}=0$
(b) $c_{1}=2$
(c) $c_{1}=1$
(d) $c_{1}=-1$

Problem 13. Which of the following vectors is in the column space of the matrix $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0\end{array}\right]$?
(a) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$

Problem 14. Let $T\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{1}+x_{2}-x_{3} \\ x_{1}-x_{2}+x_{3}\end{array}\right]$ and $S\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{c}y_{1}-2 y_{2} \\ y_{1}+y_{2}\end{array}\right]$. Then $[S \circ T]=$
(a) $\left[\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$
(c) $\left[\begin{array}{ccc}-1 & 3 & -3 \\ 2 & 0 & 0\end{array}\right]$
(d) $\left[\begin{array}{cc}1 & 1 \\ 2 & -1 \\ -1 & 2\end{array}\right]$

Problem 15. Let $\mathbf{n}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. While of the following subsets of \mathbb{R}^{3} is a subspace of \mathbb{R}^{3} ?
(a) $\{\mathbf{v} \mid \mathbf{v}+\mathbf{n}=\mathbf{0}\}$
(b) $\{\mathbf{v} \mid \mathbf{v} \cdot \mathbf{n}=0\}$
(c) $\{\mathbf{v} \mid \mathbf{v} \cdot \mathbf{v}=1\}$
(d) $\{\mathbf{v} \mid \mathbf{v} \cdot \mathbf{n}=1\}$

Problem 16. Which of the following is a basis of \mathbb{R}^{3} ?
(a) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 4 \\ 1\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{c}0 \\ -4 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{l}4 \\ 4 \\ 5\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$

Part III: Detailed answer questions

(6 points each)
Problem 1. (a) Let $\mathbf{u}=\left[\begin{array}{c}1 \\ -2 \\ 0 \\ 3\end{array}\right]$. Find a unit vector in the direction of $-\mathbf{u}$.
(b) The planes $2 x+y-z=2$ and $x+y+z=3$ intersect in a line. Find the vector form equation of this line.
(c) Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$. Describe all vectors \mathbf{v} such that $\mathbf{u} \cdot \mathbf{v}=1$. Is this a vector subspace of \mathbb{R}^{3} ?

Problem 2. Find the distance from the point $(2,2,2)$ to the plane p with equation $x+y-z=0$.

Problem 3. Solve the following system of equations using Gauss-Jordan elimination.

$$
\begin{aligned}
-2 x+y+z & =4 \\
x-2 y+z & =1 \\
x+y-2 z & =-5
\end{aligned}
$$

Problem 4. For each of the following two linear functions $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, find $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$, and give the standard matrix $[T]$ of T.
(a) T is a rotation by 90 degrees, as shown in the illustration:

Answer: $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\square \quad T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\square$
(b) T is a reflection about the y-axis:

Answer: $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\square$

$$
T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\square
$$

Problem 5. Find the inverse of $A=\left[\begin{array}{ccc}3 & 2 & -2 \\ 0 & 1 & 0 \\ -1 & -1 & 1\end{array}\right]$ if it exists.

Problem 6. Compute the determinant of A.

$$
A=\left[\begin{array}{cccc}
1 & 0 & 3 & -1 \\
1 & 0 & 2 & 0 \\
2 & -2 & 1 & 4 \\
2 & 0 & 1 & 0
\end{array}\right]
$$

Problem 7. Find bases for $\operatorname{col}(A)$ and $\operatorname{null}(A)$ if

$$
A=\left[\begin{array}{ccc}
1 & 3 & -1 \\
1 & 2 & 0 \\
2 & 5 & -1
\end{array}\right]
$$

Problem 8. Determine whether A is diagonalizable and, if so, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

$$
A=\left[\begin{array}{ccc}
5 & 4 & -4 \\
-8 & -7 & 8 \\
0 & 0 & 1
\end{array}\right]
$$

Extra page for rough work.

