A Completeness Theorem for Injectivity Logic

J. Adámek, M. Hébert and L. Sousa

CT06 White Point, June 2006

C is h-injective is written $C \models h$

$$A \xrightarrow{h} B$$

$$\forall g \mid \exists g'$$

$$C \in \mathcal{H}^{\triangle}$$
 is written $C \models \mathcal{H}$

$$(= \forall h \in \mathcal{H} \ (C \models h))$$

$$f \in (\mathcal{H}^{\triangle})^{\nabla}$$
 is written $\mathcal{H} \models f$

$$\forall C \ (C \models \mathcal{H} \Rightarrow C \models f)$$

EXAMPLE: In $Alg(\Sigma)$ (Σ a signature), any h can be "presented by generators and relations":

$$A = \langle \mathbf{x}; E(\mathbf{x}) \rangle \xrightarrow{h} \langle \mathbf{x}, \mathbf{y}; E(\mathbf{x}) \wedge F(\mathbf{x}, \mathbf{y}) \rangle = B$$

 $(E, F \text{ sets of equations (i.e., } \in \land Atomic))$

$$C \models h \text{ means } C \models \forall \mathbf{x}(E(\mathbf{x}) \to \exists \mathbf{y} F(\mathbf{x}, \mathbf{y}))$$

If A and B are finitely presentable, h "is" a (regular) finitary sentence.

Conversely, any regular sentence "is" a morphism.

$$C \models \mathcal{H} \quad \mathbf{means} \quad \forall h \in \mathcal{H} \ (C \models h)$$

$$\mathcal{H} \models f \quad \text{means} \quad \forall C \ (C \models \mathcal{H} \Rightarrow C \models f)$$

CONTEXT:

 \mathcal{A} can be locally presentable, or **Top**, or...

QUESTIONS: Given $\mathcal{H} \models f$,

- (1) Can we "deduce" (= construct) f from \mathcal{H} ?
- (2) If \mathcal{H} and f are "finitary", is there a "finitary" proof?

ANSWERS:

- (1) Yes for all sets \mathcal{H} of morphisms: this follows directly from the "Small-Object Argument" ([Quillen, 67], [Ad-Her-Ros-Tho, 02]) (see below)
- (2) Yes (our main result). This will give in particular a Compactness Theorem:

$$\mathcal{H} \models f \Rightarrow \mathcal{H}' \models f$$
 for some finite $\mathcal{H}' \subset \mathcal{H}$

(will extend to a λ -ary version)

(1) **Proof.**

Note first:

- (a) $\operatorname{Mod}(\mathcal{H}) (= \mathcal{H}^{\triangle})$ is weakly reflective in \mathcal{A} .
- (b) the reflectors $r_A \colon A \to \overline{A}$ are cellularly generated by \mathcal{H} :

$$r_A \in cell(\mathcal{H}) = Comp(P.O.(\mathcal{H}))$$

i.e., r_A is the colimit of a smooth chain of pushouts of members of \mathcal{H} (i.e., all $r_\alpha \colon A_\alpha \to A_{\alpha+1}$ below are in P.O.(\mathcal{H}))

Hence, given $\mathcal{H} \models f : A \rightarrow B$, we have

(since $\overline{A} \models \mathcal{H} \models f$).

Hence f is "deduced" from \mathcal{H} using the rules:

Injectivity Deduction System (\vdash_{∞})

TRANSFINITE
$$r_{\alpha}$$
 $(\alpha < \beta)$ if $r = \text{comp}(r_{\alpha})_{\alpha < \beta}$, COMPOSITION r is any ordinal

PUSHOUT
$$\frac{h}{r_{\alpha}}$$
 if $\frac{h}{r_{\alpha}}$

CANCELLATION
$$\frac{u \cdot f}{f}$$
 if $u \cdot f$ is defined

We write this as

$$\mathcal{H} \vdash_{\infty} f$$

Soundness $(\mathcal{H} \vdash_{\infty} f \Rightarrow \mathcal{H} \models f)$ is straightforward, hence:

$$\mathcal{H} \models f \text{ iff } \mathcal{H} \vdash_{\infty} f$$

for every set \mathcal{H} and every f

[λ -ary] Injectivity Deduction System ($\vdash _{\lambda}$) [\vdash_{λ}]

$$[\lambda$$
-ARY]
TRANSFINITE
COMPOSITION

$$\frac{h_{\alpha} (\alpha < \beta)}{h}$$

$$\frac{h_{\alpha} \ (\alpha < \beta)}{h}$$

$$\frac{h_{1} \quad h_{2}}{\beta \text{ is any ordinal}}$$

$$[\beta < \lambda]$$

$$\frac{h}{h'}$$

if
$$\sqrt{\frac{h}{h'}}$$

CANCELLATION
$$\frac{u \cdot f}{f}$$

$$\begin{array}{c}
u \cdot f \\
f \\
f
\end{array}$$

(2) **Definitions**:

Finitary proof $(\mathcal{H} \vdash_{\omega} f)$: if f can be obtained from \mathcal{H} by a finite number of applications of the rules:

Finitary Injectivity Deduction System (\vdash_{ω})

IDENTITY
$$\overline{\mathrm{id}_A}$$

COMPOSITION $\frac{h_1 \ h_2}{h_2 \cdot h_1}$

PUSHOUT $\frac{h}{h'}$

CANCELLATION $\frac{u \cdot f}{f}$
 $u \cdot f$

 $f: A \to B$ is finitary if A and B are finitely presentable (\neq "f is finitely presentable").

Theorem

(When f and all $h \in \mathcal{H}$ finitary)

$$\mathcal{H} \models f$$
 iff $\mathcal{H} \vdash_{\omega} f$

Proof. (Assume \mathcal{A} locally finitely presentable)

As before, $\overline{A} \models \mathcal{H} \models f : A \rightarrow B$ gives:

This time A and B are finitely presentable, so:

for some α

However $\mathcal{H} \not\vdash_{\omega} r_{0,\alpha}$!

The wanted deduction is not (quite) part of this diagram.

We know that the class of ordinals

 $S = \{ \alpha \mid \text{some } \alpha\text{-chain in P.O.}(\mathcal{H}) \text{ factorizes through } f \}$ is not empty, hence it has a first element σ .

We show that σ is finite:

Suppose σ is infinite.

Then $\sigma = \tau + k$ for τ limit ordinal and k finite.

- $k \neq 0$ (because A, B are finitely presentable)
- We can assume k = 1.

$$A = A_0 \xrightarrow{f} A_1 \cdots A_i \xrightarrow{A_{i+1}} A_{i+1} \xrightarrow{u} A_{\tau+1} = A_{\sigma}$$

Then p factorizes through the chain by some q (because D is finitely presentable)

Let $(h_i, q_i) = \text{Pushout}(h, q)$:

Let
$$(h_i, q_i) = \text{Pushout}(h, q)$$
:
$$A = A_0 \longrightarrow A_1 \cdots A_i \longrightarrow A_{i+1} \longrightarrow A_{\tau+1} = A_{\sigma}$$

$$h_i \bigvee_{q_i} q_i$$

Then take successive pushouts, and their colimits, etc.:

$$A = A_0 \longrightarrow A_1 \cdots A_i \xrightarrow{q} A_{i+1} \longrightarrow \cdots A_{\tau} \xrightarrow{h_i \downarrow} A_{\tau+1} = A_{\sigma}$$

$$P_i \longrightarrow P_{i+1} \longrightarrow \cdots P_{\tau}$$

Then there exists an isomorphism s making the triangle commute, since $h_{\tau}(=\operatorname{colim}(h_j)_{j\geq i})$ is also the pushout of h by p!

But then the smooth τ -chain in P.O.(\mathcal{H})

$$A \to A_1 \to \cdots \to A_i \xrightarrow{h_i} P_i \to P_{i+1} \to \cdots \to P_{\tau}$$

factorizes through f, contradicting the minimality of σ .

EXAMPLES AND COUNTEREXAMPLES

1) The Finitary Completeness Theorem

$$\mathcal{H} \models f \Leftrightarrow \mathcal{H} \vdash_{\omega} f$$

holds in all weakly locally ranked categories (the proof is more involved).

2) In locally finitely presentable categories,

$$\mathcal{H} \models_{\omega} f \implies \mathcal{H} \vdash_{\omega} f.$$

in general (Here $\mathcal{H} \models_{\omega} f$ means $\mathcal{H} \models f$ in \mathcal{A}_{fp})

3) In **CPO(1)** (= continuous posets with an extra binary relation),

$$\mathcal{H} \models f \Rightarrow \mathcal{H} \vdash_{\infty} f$$

 $(\mathcal{H} \text{ a set}) \text{ in general.}$

4) In locally finitely presentable categories, the (∞ -ary) Completeness Theorem

$$\mathcal{H} \models f \quad \Leftrightarrow \quad \mathcal{H} \vdash_{\infty} f$$

does NOT hold for CLASSES \mathcal{H} in general.

However it holds for classes \mathcal{H} made of

- (a) epimorphisms (easy), or of
- (b) finitely presentable morphisms (less easy).