Lax-algebraic theories and closed objects

Dirk Hofmann

University of Aveiro

dirk@mat.ua.pt

A *lax-algebraic theory* \mathcal{T} is a triple $\mathcal{T} = (\mathbb{T}, V, \xi)$ consisting of

a monad $\mathbb{T} = (T, e, m)$, a quantale $\mathsf{V} = (\mathsf{V}, \otimes, k)$ and

a map $\xi: TV \to V$

such that

$$(M_e) 1_v \le \xi \cdot e_v,$$
 $(M_m) \quad \xi \cdot T\xi \le \xi \cdot m_v,$

$$(Q_{\otimes}) T(V \times V) \xrightarrow{T(\otimes)} TV \qquad (Q_{k}) \qquad T1 \xrightarrow{Tk} TV$$

$$\downarrow \qquad \leq \qquad \downarrow \xi \qquad \qquad ! \downarrow \qquad \leq \qquad \downarrow \xi$$

$$V \times V \xrightarrow{\otimes} V, \qquad 1 \xrightarrow{k} V,$$

 (Q_{V}) $(\xi_{X})_{X}: P_{V} \to P_{V}T$ is a natural transformation.

Examples.

- (a). $\mathscr{I}_{\mathsf{v}} = (\mathbb{1}, \mathsf{V}, \mathbb{1}_{\mathsf{v}})$ is a strict lax-algebraic theory.
- (b). Let $\mathbb{T}=(T,e,m)$ be a monad where T is taut and let V be a (ccd)-quantale. Then $\mathscr{T}_\mathsf{V}=(\mathbb{T},\mathsf{V},\xi_\mathsf{V})$ is a lax-algebraic theory, where

$$\xi_{\mathsf{V}}: T\mathsf{V} \to \mathsf{V}, \ \mathfrak{x} \mapsto \bigvee \{v \in \mathsf{V} \mid \mathfrak{x} \in T(\uparrow v)\}.$$

(c). $\mathscr{L}_{V}^{\otimes} = (\mathbb{L}, V, \xi_{\otimes})$ is a strict lax-algebraic theory for each quantale V, where

$$\xi_{\otimes}: LV \to V.$$

$$(v_1, \dots, v_n) \mapsto v_1 \otimes \dots \otimes v_n$$

$$() \mapsto k$$

The bicategory V-Mat:

- objects: sets X, Y, \dots
- morphism: V-matrices $r: X \times Y \to V$,
- composition: $s \cdot r(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$

We extent $T:\mathsf{Set}\to\mathsf{Set}$ to $T_{\xi}:\mathsf{V}\mathsf{-Mat}\to\mathsf{V}\mathsf{-Mat}$ by putting

$$\begin{array}{ccc} T_{\xi}r:TX\times TY\to \mathsf{V}.\\ & (\mathfrak{x},\mathfrak{y})& \mapsto \bigvee_{\substack{\mathfrak{w}\in T(X\times Y):\\ T\pi_{_{X}}(\mathfrak{w})=\mathfrak{x},}} \xi\cdot Tr(\mathfrak{w}) \end{array}$$

Here

$$T(X \times Y) \xrightarrow{Tr} TV \xrightarrow{\xi} V.$$

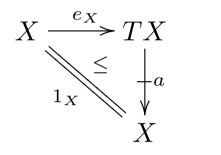
 $T\pi_{_{Y}}(\mathfrak{w})=\mathfrak{y}$

The following statements hold.

- (a). For each V-matrix $r: X \longrightarrow Y$, $T_{\xi}(r^{\circ}) = T_{\xi}(r)^{\circ}$.
- (b). For each function $f: X \to Y, Tf \leq T_{\xi}f$ and $Tf^{\circ} \leq T_{\xi}f^{\circ}$.
- (c). $T_{\xi} s \cdot T_{\xi} r \leq T_{\xi} (s \cdot r)$ provided that T satisfies (BC), and $T_{\xi} s \cdot T_{\xi} r \geq T_{\xi} (s \cdot r)$ provided that $(Q_{\otimes}^{=})$ holds.
- (d). The natural transformations e and m become op-lax, that is, for every V-matrix $r: X \longrightarrow Y$ we have the inequalities:

Let $\mathscr{T} = (\mathbb{T}, \mathsf{V}, \xi)$ be a lax-algebraic theory.

• A \mathscr{T} -algebra (\mathscr{T} -category) is a pair $(X, a: TX \longrightarrow X)$ s. t.



and

$$TTX \xrightarrow{m_X} TX$$

$$T_{\xi} a \downarrow \qquad \leq \qquad \downarrow a$$

$$TX \xrightarrow{a} X.$$

$$k \to a(\dot{x}, x)$$

$$T_{\xi}a(\mathfrak{X},\mathfrak{x})\otimes a(\mathfrak{x},x)\to a(m_X(\mathfrak{X}),x)$$

• A map $f: X \to Y$ between \mathscr{T} -algebras (X, a) and (Y, b) is a lax homomorphism $(\mathscr{T}$ -functor) if

$$TX \xrightarrow{Tf} TY$$

$$a \downarrow \qquad \leq \qquad \downarrow b$$

$$X \xrightarrow{f} Y$$

$$a(\mathfrak{x},x) \to b(Tf(\mathfrak{x}),f(x)).$$

 \bullet The resulting category of \mathcal{T} -algebras and lax homomorphisms we denote by \mathscr{T} -Alg.

Examples.

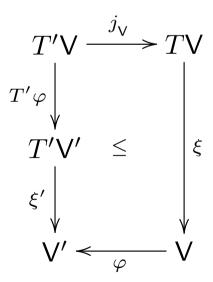
- (a). For each quantale V, \mathscr{I}_{V} -Alg = V-Cat. In particular, \mathscr{I}_2 -Alg \cong Ord and $\mathscr{I}_{\mathbb{P}_{\!\!\perp}}$ -Alg \cong Met.

- (b). \mathscr{U}_2 -Alg \cong Top. (c). \mathscr{U}_{P_+} -Alg \cong Ap. (d). $\mathscr{L}_{V}^{\otimes}$ -Alg \cong V-MultiCat.

Let $\mathscr{T} = (\mathbb{T}, \mathsf{V}, \xi)$ and $\mathscr{T}' = (\mathbb{T}', \mathsf{V}', \xi')$ be lax-algebraic theories.

- A morphism $(j,\varphi): \mathscr{T}' \to \mathscr{T}$ of lax-algebraic theories is a pair (j,φ) consisting of
 - a monad morphism $j: \mathbb{T}' \to \mathbb{T}$ and
 - a lax homomorphism of quantales $\varphi: V \to V'$

such that $\xi' \cdot T' \varphi \leq \varphi \cdot \xi \cdot j_{\mathsf{V}}$.



From now on we consider a strict lax-algebraic theory $\mathscr{T} = (\mathbb{T}, \vee, \xi)$ where \mathbb{T} satisfies (BC).

Examples.

- (a). The identity theory \mathscr{I}_{V} , for each quantale V.
- (b). For each quantale V, the theory $\mathscr{L}_{V}^{\otimes} = (\mathbb{L}, V, \xi_{\otimes})$.
- (c). Any lax-algebraic theory $\mathcal{T} = (\mathbb{T}, \mathsf{V}, \xi)$ with a (BC)-monad \mathbb{T} , $\otimes = \wedge$ and ξ a Eilenberg-Moore algebra.
- (d). The theory $\mathscr{U}_{\underline{P}_{\!\!+}}=(\mathbb{U},\underline{P}_{\!\!+},\xi_{\underline{P}_{\!\!+}}).$

Then

• V becomes a \mathscr{T} -algebra (V, \hom_{ξ}) where $\hom_{\xi} = \hom \cdot \xi$, that is,

$$\hom_{\xi}(\mathfrak{v}, v) = \hom(\xi(\mathfrak{v}), v).$$

• the tensor product \otimes on V can be transported to \mathscr{T} -Alg by putting $(X, a) \otimes (Y, b) = (X \times Y, c)$ where

$$c(\mathfrak{w},(x,y)) = a(\mathfrak{x},x) \otimes b(\mathfrak{y},y).$$

When $X \otimes \bot$ has a right adjoint \bot^X ?

Note that

$$\frac{1 \to Y^X}{X \otimes 1 \to Y}$$

Hence we consider

$$\{f: \hat{X} \to Y \mid f \text{ is a lax homomorphism}\},\$$

where

$$\hat{a}(\mathfrak{x},x) = \begin{cases} a(\mathfrak{x},x) & \text{if } T!(\mathfrak{x}) = e_1(\star), \\ \bot & \text{else;} \end{cases}$$

and

$$d(\mathfrak{p},h) = \bigwedge_{\substack{\mathfrak{q} \in T(Y^X \times X), x \in X \\ \mathfrak{q} \mapsto \mathfrak{p}}} \hom(a(T\pi_X(\mathfrak{q}),x),b(T\mathrm{ev}(\mathfrak{q}),h(x))).$$

Letv X = (X, a) be a \mathcal{T} -algebra.

- Assume that $a \cdot T_{\xi} a = a \cdot m_{\chi}$. Then d is transitive.
- Assume that the structure d on V^X is transitive. Then $a\cdot T_\xi a=a\cdot m_{_X}.$
- Each T-algebra is closed in \mathscr{T} -Alg.
- Each V-category is closed in \mathscr{T} -Alg provided that $Te \cdot e = m^{\circ} \cdot e$.

The following assertions hold.

- $\bigwedge : \mathsf{V}^I \to \mathsf{V}$ is a lax homomorphism.
- $hom(v, _) : V \to V$ is a lax homomorphism for each $v \in V$.
- $v \otimes_{-} : V \to V$ is a lax homomorphism for each $v \in V$ which satisfies

$$T1 \xrightarrow{Tv} TV$$

$$\downarrow \downarrow \qquad \qquad \downarrow \xi$$

$$1 \xrightarrow{v} V.$$

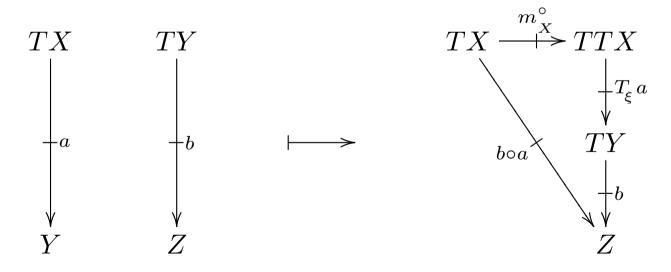
• For each T-algebra $I, \bigvee : \mathsf{V}^I \to \mathsf{V}$ is a lax homomorphism.

T-Kleisli.

objects: sets X, Y, \dots

morphism: V-matrices $a: TX \longrightarrow Y$.

composition: $b \circ a := b \cdot T_{\xi} a \cdot m_X^{\circ}$,



Then $e_X^{\circ}: TX \longrightarrow X$ is a lax identity for " \circ ", that is

$$a \circ e_{_X}^{\circ} = a$$

and

$$e_X^{\circ} \circ a \ge a$$
.

Moreover, $c \circ (b \circ a) = (c \circ b) \circ a$

 $(X, a: TX \longrightarrow X)$ is a \mathscr{T} -algebra iff $e_X^{\circ} \leq a$ and $a \circ a \leq a$.

Example: \mathcal{U}_2

- e_X° is also a left unit (precisely) if we restrict ourself to those $a: UX \longrightarrow Y$ where $\{\mathfrak{x} \in UX \mid a(\mathfrak{x}, y) = \text{true}\}$ is closed in UX.
- This restriction of \mathcal{U}_2 -Kleisli is 2-equivalent to CSet (where a morphism from X to Y is a finitely additive map $c: PX \to PY$).

Let X = (X, a) and Y = (Y, b) be \mathcal{T} -algebras.

- A (\mathbb{T}, V) -bimodule $\psi : (X, a) \longrightarrow (Y, b)$ is a matrix $\psi : TX \longrightarrow Y$ such that $\psi \circ a \leq \psi$ and $b \circ \psi \leq \psi$.
- For (\mathbb{T}, V) -categories (X, a) and (Y, b), and a V -matrix $\psi: TX \longrightarrow Y$, the following assertions are equivalent.
- (a). $\psi: (X, a) \longrightarrow (Y, b)$ is a (\mathbb{T}, V) -bimodule.
- (b). Both $\psi: |X| \otimes Y \to \mathsf{V}$ and $\psi: X^{\mathrm{op}} \otimes Y \to \mathsf{V}$ are (\mathbb{T}, V) -functors.