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Introduction: the other side of the fence...

Enviable aspects of Grothendieck toposes:

• We know what a Grothendieck topos is.

• Characterizations (sheaves on a site, Giraud’s
theorem).

• 2-category of Grothendieck toposes has
various good closure properties.

• There are nice representation theorems.
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This side of the fence...

- Interesting examples: Effective topos, toposes
for various other types of realizability.

- Constructions and presentations of such toposes
via indexed categories, completions.

1. Can we abstractly characterize/define
realizability toposes?

2. How can we understand morphisms of
realizability toposes?

3. Are there useful representation theorems?

4. What constructions can we perform on
realizability toposes?
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Basic combinatorial objects.

We consider systems Σ = (Σ,≤,FΣ), where Σ is a
set, ≤ is a partial ordering of Σ, and FΣ is a class
of partial monotone endofunctions on Σ.

Such a system is called a basic combinatorial
object (BCO for short) if the class FΣ has the
following properties:

• For f ∈ FΣ, dom(f) is downward closed

• 1Σ ∈ FΣ

• f, g ∈ FΣ ⇒ fg ∈ FΣ.

We think of the functions f ∈ FΣ as the
computable or realizable functions on Σ.
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Morphisms of BCOs.

Given Σ = (Σ,≤,FΣ) and Θ = (Θ,≤,FΘ), a
morphism φ : Σ → Θ is a function on the
underlying sets such that

• there exists u ∈ FΘ such that for all a ≤ a′ in
Σ we have u(φ(a)) ≤ φ(a′);

• for all f ∈ FΣ there exists g ∈ FΘ with
gφ(a) ≤ φ(f(a)) for all a ∈ dom(f).

The following diagram serves as a heuristics for
the second condition:

Σ
φ

//

∀f∈FΣ

��

Θ

∃g∈FΘ≥
��

Σ
φ

// Θ.
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BCOs and morphisms form a category BCO.
This category is in fact pre-order enriched: for
two parallel morphisms φ, ψ : Σ → Θ, we define

φ ` ψ ⇔ ∃g ∈ FΘ∀a ∈ Σ.gφ(a) ≤ ψ(a).

Note: this is in general not a pointwise ordering.

Definition. A BCO Σ is called cartesian if both
maps Σ → Σ× Σ and Σ → 1 have right adjoints,
which we then denote by ∧ : Σ× Σ → Σ and
> : 1 → Σ. A morphism between cartesian BCOs
is called cartesian if it preserves the cartesian
structure up to isomorphism.

The sub-2-category on the cartesian objects and
morphisms will be denoted by BCOcart.
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Examples.

1. Every poset can be viewed as a BCO: the
only computable function will be the identity.
This gives a full 2-embedding of the
2-category of posets into BCO. It restricts to
an embedding of meet-semilattices into
BCOcart.

2. Consider the natural numbers N with the
discrete ordering. Declare each partial
recursive function to be computable. This
gives in fact a cartesian BCO, using the
recursion-theoretic pairing N× N → N.

3. Every PCA is a cartesian BCO, see next
slides.
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Partial Combinatory Algebras.

Partial applicative structures. Let A be a
set, endowed with a partial application

• : A×A ⇀ A.

Notation. Write abc for (a • b) • c; write ab↓ for
(a, b) ∈ dom(•).

Every element b ∈ A is thought of as representing
a function, namely the function a 7→ b • a.

More generally, a (partial) function f : An+1 ⇀ A

is said to be represented by an element b ∈ A
when for all a1, . . . , an+1 ∈ A:

• b • a1 · · · an+1 ' f(a1, . . . , an+1)

• b • a1 · · · an↓ .

9



Fix a partial applicative structure (A, •). A term
over A is an expression built from elements of A,
variables and brackets using •.

E.g., (a • x2) • (x3 • x1), x2 and b • b are terms.

A term t with FV (t) ⊂ {x1, . . . , xn} may be
viewed as a polynomial function An ⇀ A.

Definition. We say that A = (A, •) is a PCA
when every term is representable by an element of
A.

• write λ−→x .t for the element representing t

• one can define a representable pairing
operation 〈−,−〉 : A×A→ A

• every PCA contains a copy of N such that
every recursive function is representable.
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Examples (continued).

Fact: there is a full 2-embedding of PCAs into the
category BCOcart.

This suggests that (cartesian) BCOs comprise a
spectrum of objects, with on one extreme lattices
(purely order-theoretic/spatial) and on the other
extreme PCAs (purely combinatorial).

What’s in between?

• Ordered PCAs (underlying set is partially
ordered, representability conditions now hold
up to inequality). Given a PCA A, the
non-empty subsets from an ordered PCA via
U • V ' {uv|u ∈ U, v ∈ V }.

• Given a PCA A and a full sub-PCA B ⊆ A

one can consider relative computability: the
computable functions on A are those of the
form b • − for b ∈ B.

• Combine the above two.
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From BCOs to logic.

Fix a BCO Σ. For an arbitrary set X, we define a
preorder on the set [X,Σ] as

α `X β ⇔ ∃f ∈ FΣ.∀x ∈ X.f(α(x)) ≤ β(x).

- Σ is a collection of truth-values

- X is a type

- α, β : X → Σ are predicates with a free variable
of type X

X 7→ [X,Σ] defines a Set-indexed preorder,
denoted [−,Σ].

This defines a 2-functor BCO → Set-indexed
preorders. This is a 2-embedding.

Example. If Σ arises from the PCA N, then the
preorder in the fibre over X is:

α `X β ⇔ ∃n.∀x.n • α(x) = β(x).
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Look for correspondence:

properties of Σ ↔ properties of [−,Σ]

For example:

Σ is cartesian ⇔ [−,Σ] has indexed finite limits.

Less trivial: when does [−,Σ] have existential
quantification? Consider the following
construction: for a BCO Σ, put

D(Σ) = {U ⊆ Σ|U is downward closed}.

This is ordered by inclusion, and a partial
monotone function F : D(Σ) ⇀ D(Σ) is defined to
be computable if there is an f ∈ FΣ such that

U ∈ dom(F ) ⇒ ∀a ∈ U. f(a)↓ & f(a) ∈ F (U).
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Downset monad.

Fact. The functor D is a KZ-monad on BCO.

Proposition. The following are equivalent:

• The indexed preorder [−,Σ] has existential
quantification

• The BCO Σ is a pseudo-algebra for the
monad D.

Remarks.

1) Because D is KZ, a pseudo-algebra structure is
necessarily unique up to isomorphism.

2) Applying D to the example Σ = N gives the
Effective tripos.

3) There is a variation: replace D by Di, inhabited
downsets. The above result then is true when we
restrict to quantification along surjective maps.
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Tripos characterizations.

From now we work in the category BCOcart.
Define

TV (Σ) = {a ∈ Σ|> ` a}.

The set TV (Σ) is upwards closed, and is closed
under conjunction. Its elements are called
designated truth-values.

Theorem (Free case). The following are
equivalent for a cartesian BCO Σ:

• [−,D(Σ)] is a tripos;

• There is an ordered PCA structure on Σ, the
filter TV (Σ) is a sub-ordered PCA, and the
BCO structure on Σ arises in the canonical
way from this data.

These are free triposes: existential quantification
has been freely added.
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Tripos characterizations (continued).

The general case is the following:

Theorem. The following are equivalent for a
cartesian pseudo-algebra Σ:

• [−,Σ] is a tripos;

• There is an ordered PCA structure on Σ, the
filter TV (Σ) is a sub-ordered PCA, and the
BCO structure on Σ arises in the canonical
way from this data. In addition, the algebra
structure map should preserve application in
the first variable (up to isomorphism).

This covers a number of non-free triposes, such as
the tripos for modified realizability and the
dialectica tripos.
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Some side results.

Theorem. The operation Σ 7→ Di(Σ) preserves
the property of being a tripos.
(“Extensionalizing” a tripos.)

This gives rise to hierarchies of triposes.

Theorem. The topos corresponding to a free
tripos [−,D(Σ)] is an exact completion, namely of
the total category of the indexed category [−,Σ].

(If we don’t work over Set but over a topos which
doesn’t satisfy AC, then replace exact completion
by relative exact completion.)
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Geometric morphisms.

Definition (informal). A morphism of BCOs
φ : Σ → Θ is computationally dense if

Σ
φ

//

∃f∈FΣ

��

Θ

∀g∈FΘ`
��

Σ
φ

// Θ.

Theorem. For φ : Σ → Θ, the following are
equivalent:

• φ is computationally dense

• D(φ) : D(Σ) → D(Θ) has a right adjoint

• [−,D(φ)] : [−,D(Σ)] → [−,D(Θ)] has a right
adjoint

18



Geometric morphisms, continued.

Theorem. For a D-algebra Σ, the following are
equivalent:

• φ is computationally dense

• φ has a right adjoint

Theorem. There is a natural isomorphism

BCOd(Σ,DΘ) ∼= Geom(DΘ,DΣ).

This gives a complete characterization of triposes
and geometric morphisms arising from BCOs.
(Also works on 2-cells.)

Example: Consider, for an algebra Σ, the map
> : 1 → Σ. Density of this map is equivalent to
[−,Σ] being a localic tripos (i.e. Σ is equivalent
to a locale).

Example: Consider N ↪→ NA, where A is an
oracle.
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Application.

Let φ : Σ → Θ be a morphism of cartesian BCOs.

Build a new BCO Σ n Θ as follows. The
underlying set of Σ n Θ is simply Σ×Θ, ordered
coordinatewise. Define the class of computable
functions to be those of the form

(x, y) 7→ (fx, g(φ(x) ∧ y))

where f ∈ FΣ, g ∈ FΘ.

This defines a comma square:

(x, y)
_

��

Σ n Θ

��

// Σ

φ

��

φ(x) ∧ y Θ
1

// Θ
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Proposition. Let φ : Σ → Θ be a cartesian
morphism.

• If φ is a map of D-algebras, then Σ n Θ is a
D-algebra.

• If φ is a map of (ordered) PCAs (with filters)
then Σ n Θ is an (ordered) PCA (with filter).

• If φ is a map of triposes then Σ n Θ is a
tripos.

• The projection Σ n Θ → Θ is computationally
dense.
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Now let φ : Σ → Θ be a map of ordered PCAs. In
the realizability topos RT(Θ) over Θ, this
exhibits Σ as an internal projective PCA. Thus,
we can build the realizability topos over this
internal PCA:

Set → RT(Θ) → RTRT(Θ)(Σ).

By Pitts’ iteration theorem, the resulting topos
should come from a tripos over Set.

Theorem. There is a natural equivalence of
realizability toposes

RTRT(Θ)(Σ) ' RT(Σ n Θ).

The geometric morphism RT(Θ) → RT(Σ n Θ)
corresponds to the computationally dense
projection Σ n Θ → Θ.
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