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Introduction: the other side of the fence...

Enviable aspects of Grothendieck toposes:
e We know what a Grothendieck topos is.

e Characterizations (sheaves on a site, Giraud’s

theorem).

e 2-category of Grothendieck toposes has

various good closure properties.

e There are nice representation theorems.




This side of the fence...

- Interesting examples: Effective topos, toposes

for various other types of realizability.

- Constructions and presentations of such toposes

via indexed categories, completions.

1. Can we abstractly characterize/define

realizability toposes?

. How can we understand morphisms of

realizability toposes?
. Are there useful representation theorems?

. What constructions can we perform on

realizability toposes?




Basic combinatorial objects.

We consider systems ¥ = (X, <, Fx;), where ¥ is a
set, < is a partial ordering of X, and Fx, is a class

of partial monotone endofunctions on ..

Such a system is called a basic combinatorial
object (BCO for short) if the class Fx, has the

following properties:

e For f € Fx, dom(f) is downward closed

o 1y € F»
o fLgeFy = fgeFs.

We think of the functions f € Fx as the

computable or realizable functions on X..




Morphisms of BCOs.

Given ¥ = (3, <, Fy) and © = (0, <, Fo), a
morphism ¢ : > — O is a function on the
underlying sets such that

e there exists u € Fg such that for all a < @’ in
Y we have u(¢p(a)) < ¢(a’);

o for all f € Fx;, there exists g € Fg with
go(a) < ¢(f(a)) for all a € dom(f).

The following diagram serves as a heuristics for
the second condition:

L@
>

Z .
VfE}—zJ/ > dgeFeo
>




BCOs and morphisms form a category BCO.
This category is in fact pre-order enriched: for
two parallel morphisms ¢, : > — O, we define

o< dg e FoVa € X.gp(a) < Y(a).

Note: this is in general not a pointwise ordering.

Definition. A BCO X is called cartestan if both
maps X — 2 X 2 and X — 1 have right adjoints,

which we then denote by A : X x X — > and

T :1— X. A morphism between cartesian BCOs
is called cartesian if it preserves the cartesian

structure up to isomorphism.

The sub-2-category on the cartesian objects and
morphisms will be denoted by BCOart.




Examples.

1. Every poset can be viewed as a BCO: the
only computable function will be the identity.
This gives a full 2-embedding of the
2-category of posets into BCQO. It restricts to

an embedding of meet-semilattices into

BCOcart .

. Consider the natural numbers N with the
discrete ordering. Declare each partial
recursive function to be computable. This
gives in fact a cartesian BCO, using the
recursion-theoretic pairing N x N — N,

. Every PCA is a cartesian BCO, see next

slides.




Partial Combinatory Algebras.

Partial applicative structures. Let A be a

set, endowed with a partial application

o: AXxA— A
Notation. Write abc for (a e b) e ¢; write ab] for
(a,b) € dom/(e).

Every element b € A is thought of as representing

a function, namely the function a — b e a.

More generally, a (partial) function f : A"t —~ A

is said to be represented by an element b € A

when for all aq,...,a,11 € A:

e beay---api1 =~ f(ar,...,ant1)

e beay---ay,l .




Fix a partial applicative structure (A, e). A term
over A is an expression built from elements of A,

variables and brackets using e.
E.g., (aexy) e (x30x1), x2 and beb are terms.

A term t with F'V(t) C {z1,...,x,} may be
viewed as a polynomial function A™ — A.

Definition. We say that A = (A,e) is a PCA
when every term is representable by an element of

write A2 .t for the element representing ¢

one can define a representable pairing
operation (—, —): Ax A — A

every PCA contains a copy of N such that

every recursive function is representable.
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Examples (continued).

Fact: there is a full 2-embedding of PCAs into the
category BCOcart-

This suggests that (cartesian) BCOs comprise a
spectrum of objects, with on one extreme lattices

(purely order-theoretic/spatial) and on the other

extreme PCAs (purely combinatorial).

What’s in between?

e Ordered PCAs (underlying set is partially
ordered, representability conditions now hold
up to inequality). Given a PCA A, the
non-empty subsets from an ordered PCA via
UeV ~{uvlu e U,veV}.

Given a PCA A and a full sub-PCA BC A

one can consider relative computability: the
computable functions on A are those of the
form be — for b € B.

e Combine the above two.
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From BCOs to logic.

Fix a BCO X. For an arbitrary set X, we define a
preorder on the set [ X, Y] as

alFx e 3df € FeVr e X.f(a(z)) < B(x).

- Y. 1s a collection of truth-values
- X is a type

- o, B3 : X — Y are predicates with a free variable
of type X

X +— | X, Y] defines a Set-indexed preorder,
denoted [—, X].

This defines a 2-functor BCO — Set-indexed
preorders. This is a 2-embedding.

Example. If X arises from the PCA N, then the

preorder in the fibre over X is:

abx < dnVrnea(r) = [0(x).
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Look for correspondence:

properties of 3 «<» properties of [—, Y]

For example:

Y is cartesian <> [—, Y] has indexed finite limits.

Less trivial: when does [—, X have existential
quantification? Consider the following
construction: for a BCO X, put

D(¥) ={U C %|U is downward closed }.

This is ordered by inclusion, and a partial

monotone function F : D(X) — D(X) is defined to
be computable if there is an f € Fyx such that

U e dom(F)=VYaeU. f(a)] & f(a) € F(U).
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Downset monad.
Fact. The functor D is a KZ-monad on BCO.

Proposition. The following are equivalent:

e The indexed preorder |—, 3| has existential

quantification

e The BCO X is a pseudo-algebra for the

monad D.

Remarks.

1) Because D is KZ, a pseudo-algebra structure is

necessarily unique up to isomorphism.

2) Applying D to the example ¥ = N gives the
Effective tripos.

3) There is a variation: replace D by D;, inhabited

downsets. The above result then is true when we
restrict to quantification along surjective maps.
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Tripos characterizations.

From now we work in the category BCOcart.
Define

TV(Y) = {a € I|T F a}.

The set TV (X)) is upwards closed, and is closed
under conjunction. Its elements are called

designated truth-values.

Theorem (Free case). The following are
equivalent for a cartesian BCO X::

e [—,D(X)] is a tripos;

e There is an ordered PCA structure on >, the
filter TV (%) is a sub-ordered PCA, and the
BCO structure on X arises in the canonical
way from this data.

These are free triposes: existential quantification
has been freely added.
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Tripos characterizations (continued).
The general case is the following:

Theorem. The following are equivalent for a

cartesian pseudo-algebra >:
e [—, Y] is a tripos;

e There is an ordered PCA structure on X, the
filter TV (%) is a sub-ordered PCA, and the
BCO structure on X arises in the canonical
way from this data. In addition, the algebra
structure map should preserve application in

the first variable (up to isomorphism).

This covers a number of non-free triposes, such as
the tripos for modified realizability and the

dialectica tripos.
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Some side results.

Theorem. The operation Y — D;(X) preserves

the property of being a tripos.

(“Extensionalizing” a tripos.)

This gives rise to hierarchies of triposes.

Theorem. The topos corresponding to a free
tripos [—, D(X)] is an exact completion, namely of
the total category of the indexed category [—, X].

(If we don’t work over Set but over a topos which
doesn’t satisty AC, then replace exact completion

by relative exact completion.)
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Geometric morphisms.

Definition (informal). A morphism of BCOs

@ : X — O is computationally dense it

dfeFs

i
Theorem. For ¢:> — O, the following are
equivalent:

e ¢ is computationally dense

e D(¢):D(X) — D(O) has a right adjoint

e |-, D(¢)]:|—,DX)] — [—,D(O)] has a right

adjoint
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Geometric morphisms, continued.

Theorem. For a D-algebra 3., the following are

equivalent:
e ¢ is computationally dense
e ¢ has a right adjoint

Theorem. There is a natural isomorphism

BCO4 (X%, DO) = Geom(DO, DY).

This gives a complete characterization of triposes
and geometric morphisms arising from BCOs.
(Also works on 2-cells.)

Example: Consider, for an algebra ., the map
T :1 — X. Density of this map is equivalent to

[—, X] being a localic tripos (i.e. X is equivalent

to a locale).

Example: Consider N — N4, where A is an

oracle.
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Application.
Let ¢ : > — © be a morphism of cartesian BCOs.

Build a new BCO X x O as follows. The
underlying set of X x O is simply > X O, ordered

coordinatewise. Define the class of computable

functions to be those of the form

(z,y) — (fz,9(é(x) N y))

where f € Fx, g € Fo.

This defines a comma square:
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Proposition. Let ¢: Y — O be a cartesian

morphism.

e If ¢ is a map of D-algebras, then > x O is a
D-algebra.

If ¢ is a map of (ordered) PCAs (with filters)

then ¥ x O is an (ordered) PCA (with filter).

If ¢ is a map of triposes then > x © is a

tripos.

The projection > x ©® — O is computationally

dense.
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Now let ¢ : ¥ — © be a map of ordered PCAs. In
the realizability topos RT(0O) over O, this
exhibits X as an internal projective PCA. Thus,

we can build the realizability topos over this
internal PCA:

By Pitts’ iteration theorem, the resulting topos
should come from a tripos over Set.

Theorem. There is a natural equivalence of

realizability toposes

The geometric morphism RT(©) — RT(X x O)
corresponds to the computationally dense

projection X X © — O,
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