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“Philosophy cannot become scientifically healthy without an im-
mense technical vocabulary. We can hardly imagine our great-
grandsons turning over the leaves of this dictionary without
amusement over the paucity of words with which their grand-
sires attempted to handle metaphysics and logic. Long before
that day, it will have become indispensably requisite, too, that
each of these terms should be confined to a single meaning,
which, however broad, must be free from all vagueness. This
will involve a revolution in terminology; for in its present con-
dition a philosophical thought of any precision can seldom be
expressed without lengthy explanations.”

Charles Sanders Peirce, Collected Papers 8:169.
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1 Introduction

What is the IFF?

The Information Flow Framework (IFF)1 is a descriptive category metathe-
ory currently under development that provides an important practical
application of category theory to knowledge representation, knowledge
maintenance and the semantic web.

Why is the IFF needed?

To quote David Whitten in the common logic forum:

“We (in the knowledge sciences, technologies and industries) are
now in a situation where we don’t have a common vocabulary at
all. We now can’t (really) evaluate if two systems are the same or
not, because we don’t have the formalized packages which express
their distinctions. We don’t have a computational architecture
which is rich enough, and formally defined enough that we can
(formally) point out the differences in two different approaches to
the same problem.”

■ The Information Flow Framework (IFF) is being designed to pro-
vide a framework to address these issues.

■ A preliminary description of the IFF was presented at CT04 in
Vancouver. The CT06 presentation will discuss a new, modular,
more mature architecture.

1The main IFF webpage is located at http://suo.ieee.org/IFF/.
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1.1 Roles

pure
develop category theory
(the central role,
this conference, for example)

applied
apply category theory

(mathematics, programming languages,
concurrency, knowledge engineering, . . . )

philosophical
explain/justify category theory

(historical & social forces,
its position in reality, . . . )

support
implement category theory

(ontologies, logical code,
grammars, programming code, . . . )

■ All category theory activities involve several of these roles.

■ At any particular time, an activity may emphasize a certain role.

■ IFF development: applied ⇒ support

➤ applied: apply category theory to knowledge engineering

➤ support: apply knowledge engineering to category theory
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1.2 The Information Flow Framework (IFF)

■ The IFF originated from a desire to define morphisms for concept lat-
tices, based upon the isomorphism between FCA concept lattices and
IF classifications.

■ The IFF was develop under the auspices of the IEEE Standard Upper
Ontology (SUO) project — the idea was to used category theory for
representation and integration. It was the first of several approved SUO
resolutions.

■ There was always a close connection between the goals of the IFF and
the theory of institutions.

■ There was also a connection to foundations, since from the category-
theoretic perspective, a strong requirement of the IFF formalism was
the complete incorporation of various structures in large (level 2) cat-
egories C, such as the pullback square

mor(C)×obj(C)mor(C)

mor(C)

mor(C)

obj(C)

πC0

πC1

∂C0

∂C1

-

-
? ?

which defines the source of the composition map.

■ The IFF follows two design principles

➤ conceptual warrant
the IFF is designed bottom-up as an experiment in foundations.

➤ categorical design
the IFF develops by initially defining and constraining concepts
with a first order expression and then transforming (morphing)
the axiomatics to an atomic expression by introducing and ax-
iomatizing new, more central or higher, terminology.
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1.3 What is an Ontology?

Etymology: (first coined in the 17th century) from the Greek, oντoς: of being (oν:
present participle of ειµαι: to be) and -λoγια: science, study, theory

Aristotle: “the science of being qua (in the capacity of) being”; hence, ontology
is the science of being inasmuch as it is being, or the study of beings
insofar as they exist.

Mer-Web: 1 : a branch of metaphysics concerned with the nature and relations
of being 2 : a particular theory about the nature of being or the kinds
of existents.

Encyclo. Brit.: the theory or study of being as such; i.e., of the basic characteristics of
all reality. Ontology is synonymous with metaphysics or “first philoso-
phy” as defined by Aristotle in the 4th century BC.

Know. Engr.: “An ontology2 is a formal, explicit specification of a shared conceptu-
alization. It is an abstract model of some phenomena in the world3, ex-
plicitly represented as concepts, relationships and constraints4, which is
machine-readable5 and incorporates the consensual knowledge of some
community6.”

● The Gene Ontology

➤ concepts: (technical: gene, protein, metabolic pathway, . . . )
(organization: people, papers, conferences, . . . )

➤ relations: regulator (gene) predicate, . . .

● A Category Theory Ontology

➤ concepts: category, adjunction, . . .

➤ relations: small complete predicate, object set map, subcategory
relation, . . .

2Ontologies can be thought of as taxonomies, logical theories or knowledge-bases.
3semantic conceptualization
4logic-oriented
5formal and explicit
6shared and relative
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Concepts = Types = Entities

• highway = road

• geographical feature

– location = point
∗ exit
∗ interchange
∗ town
∗ rest-area

– line = linear feature
∗ creek
∗ river
∗ railroad

– area
∗ lake
∗ mountain
∗ city
∗ county
∗ state = province
∗ country

• territorial division

– county
– state
– country

• urban area

– town
– city

Predicates = Parts

principal : highway
toll-road : highway
freeway : highway

scenic : highway
is-capital : urban-area

Functions = Maps

name(number) : highway → name-tag×number
number-of-lanes : highway → number

distance : point×point → number
facility : rest-area → facility-tag

intersection : ext(crosses) → point
exit-location : exit → highway×number

lies-in : county → state
name-tag = {interstate, state, county}
facility-tag = {full, partial, none}

Relations

crosses : line ⇁ line
traverses : highway ⇁ territorial-division

goes-through : road ⇁ urban-area

Axioms

∀x,y ((x, y ∈ linear feature)
crosses(x, y) ⇒ crosses(y, x))

∀h,c,s ((h ∈ highway, c ∈ county, s ∈ state)
(traverses(h, c) & lies-in(c, s)) ⇒ traverses(h, s))

∀x,y,z ((x, y, z ∈ location)
distance(x, z) ≤ distance(x, y) + distance(y, z))

Figure 1: An Ontology of Roadmaps
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1.4 Design Principles

During the IFF development, two design principles have emerged as impor-
tant.

◆ Conceptual Warrant: [content]7

IFF terminology requires conceptual warrant. Warrant means evidence
for or token of authorization. Conceptual warrant is an adaptation of
the librarianship notion of literary warrant.

➤ According to the Library of Congress (LOC), its collections serve
as the literary warrant (i.e., the literature on which the controlled
vocabulary is based) for the LOC subject headings system.

➤ Likewise for the IFF, any term should reference a concept needed
in a lower (metalevel) or more peripheral axiomatization.

LOC subject headings collections
IFF higher terms lower concepts

◆ Categorical Design: [form]
IFF module design should follow good category-theoretic intuitions.

➤ Axiomatizations should complete any implicit ideas. For example,
any implicit adjunctions should be formalized explicitly.

✦ Any current axiomatization may only be partially completed.

➤ Axiomatizations should be atomic. Thus, axiomatizations should
be in the form of declarations, equations or relational expressions.
No axioms should use explicit logical notation: no variables, quan-
tifications or logical connectives should be used.

✦ Steps in the IFF axiomatization process:
natural language ⇒ first order ⇒ atomic.

✦ Although the metashell axiomatization uses first order ex-
pression, the natural part axiomatization is (destined to be)
atomic.

7A non-starter during the IFF development was a topos axiomatization. This received
objections from the SUO working group, in part due to its lack of support by motivating
examples. Rejection of the topos axiomatization prompted the idea of conceptual warrant.
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q
?

expression natural
language first-order atomic

0 1 2

q
?

category finitely
complete

cartesian
closed

topos
0 1 2

q
?

elements ordinary generialized

0 1

• Axioms in the metashell are in first order
form; most axioms in the natural part are in
atomic form.

• Finite limits have been axiomatized and ap-
plied; exponents have been axiomatized and
subobjects have been partialy axiomatized,
but neither has yet been applied.

• No generalized elements (morphisms) have
been explicitly used in place of ordinary
(global) elements; some generalized elements
show up as parameters.

Figure 2: Current Development State (June 2006)

1.5 Development State

■ As Heraclitus said “Everything flows, nothing stands still.” So too, the
IFF development is constantly under revision.

■ Attention and activity has moved from applications of institution the-
ory to a category theory standard.

■ Several concepts about development have emerged

➤ design principles

➤ architectural framework

➤ concurrent development processes
(Figure 2 indicates degree of completion)

✦ axiomatic expression: natural language⇒ first order⇒ atomic
☞ Design Principles page (transparency)

✦ finitely complete category⇒ cartesian-closed category⇒ topos
☞ Pure Aspect and Topos pages

✦ ordinary elements ⇒ generalized elements (morphisms)
☞ Inclusion/Membership and Analogs pages
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supra-natural
(metashell)

natural
(metalevel)

@
@

@
@

@
@

@@
objective

(object level)

core structure

pure applied

(iconic version)

Figure 3: The IFF Architecture

2 Architecture

■ a two dimensional structure consisting of levels (vertical dimension),
namespaces (horizontal dimension) and meta-ontologies (composites)

■ described in terms of parts, aspects and components

2.1 Modular Structure

parts: (vertical dimension)

objective part (n = 0) (atomic expression; no logical structure)
terminology for object-level ontologies

natural part (1 ≤ n < ∞) (atomic expression)
namespaces for many concepts of mathematics and logic

supranatural part (n ∈ {meta,type,kind,iff}) (first order expression)
metashell axiomatization
(temporary scaffolding for construction of the architecture)

aspects: (horizontal dimension)

pure aspect set-theoretic and category-theoretic foundations

applied aspect terminology and axiomatization for logical and semi-
otic functionality
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supra-natural
(metashell)

natural
(metalevel)

@
@

@
@

@@

@@
objective

(object level)

core structure

pure applied

(iconic version)

metashell
(first order)

natural
part

(atomic)

iff/kind metashell: temporary scaffolding used
to construct the metastack in partic-
ular and the natural part in general

type

meta

· · ·
n

· · ·
vlrg = 3

lrg = 2

sml = 1

obj = 0

IFF-CORE

krnl

�

�

�




metastack
�
 �	

dgm lim expn

IFF-CAT

gph cat func nat adj mnd kan top fbr

IFF-INS

clsn info clg inst

IFF-FOL

trm expr fol

IFF-OBJ

langmod th

SUO Botany Ontolingua WordNet SENSUS Holes Gene SemWeb

Cyc Enterprise e-commerce Government Education HPKB SUMO · · ·

(detailed version)

Figure 4: The IFF Architecture



2.2 Pure Aspect

supra-natural
(metashell)

natural
(metalevel)

@
@

@
@

@
@

@@
objective

(object level)

core

IFF-SET

structure

IFF-DCAT

IFF-2CAT

IFF-CAT

pure applied

Cat1 = cat(Set1) small categories
Set1 ∈ obj(Cat2) Cat2 = cat(Set2) large categories

· · ·
Setn−1 ∈ obj(Catn) Catn = cat(Setn) level n categories

Setn ∈ obj(Catn+1) Catn+1 = cat(Setn+1) level n+1 categories
· · ·

“Such is ‘set theory’ in the practice of mathematics;
it is part of the essence from which organization emerges.”
∼ Bill Lawvere

(iconic version)

(The IFF Architecture)

■ partitioned into a core component and a structural component

■ the axiomatization for any concept is given in one generic module
(namespace) at level 1 ≤ n < ∞

■ the finite metalevels, 1 ≤ n < ∞, are populated by generic8 and para-
metric9 meta-ontologies

■ only one copy of a meta-ontology with a level parameter is needed for
all finite levels

core component
contains a single generic meta-ontology IFF-SET for set theory, which
incorporates the specialization of the meta namespace (IFF-META) from
the metashell. The IFF-SET specifies set theory as a chain of toposes
of Cantorian featureless abstract sets10

Set = 〈Set1 ⊂ Set2 ⊂ · · · ⊂ Setn ⊂ · · ·〉

where Set1 contains “small” sets and functions between “small” sets.

structure component
contains various generic meta-ontologies for category theory, (IFF-CAT,
IFF-2CAT, IFF-DCAT, . . . ). The IFF-CAT meta-ontology specifies cate-
gory theory as a chain of internal categories11

Cat = 〈Cat1 ⊂ Cat2 ⊂ · · · ⊂ Catn ⊂ · · ·〉

in the toposes Set

8generic: the terminology and axiomatization for any two metalevels is identical
9parametric: the metalevel index is a parameter

10motivated by and compatible with the Cantorian Expansion of sets
11by axiomatizing categories, functors, natural transformations, adjunctions, monads,

. . .
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IFF Term Concept

#n:Set Setn

#n.set:set obj(Setn)
#n.set:power ℘Setn
#n.set:{zero, one, two} 0Setn, 1Setn, 2Setn= ΩSetn

#n.ftn:function mor(Setn)
#n.ftn:power ℘Setn
#n.ftn:composition ◦Setn

#n.ftn:identity 1Setn

#n.pred:fiber SubSetn

#n.pred:binary-meet ∧Setn

#n.rel:fiber01 ϕSetn
01

#n.lim.prd2.obj:product ×Setn

#n.lim.prd2.obj:projection{0,1} πSetn
i , i = 0, 1

#n.exp.obj:exponent BA

#n.exp.obj:evaluation BA×A→ B
#n.exp.obj:hom Setn[-, -]
#n.exp.obj:curry Setn[C×A,B] → Setn[C,BA]

Table 1: Setn as a Topos

2.3 Topos Elements

■ A category E is a topos when it has finite limits, it is cartesian closed,
and it has a subobject classifier; equivalently, when it has finite limits
and comes equipped with

➤ an object of truth values ΩE ∈ obj(E),

➤ a power function ℘E : obj(E) → obj(E),

➤ for each object A ∈ E two natural isomorphisms

SubE(A) ∼= HomE [A,ΩE ]

HomE [A×B,ΩE ]
ϕE01−→ HomE [A,℘EB]

where SubEA is the set of subobjects of A.

Fact 1 For each n, the category Setn of level n sets and functions is a topos.

Proof: See Table 1, which contains selected topos-representing terms.
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2.4 Graphic




#
"

 
!

sets, predicates,
functions, relations




#
"

 
!

diagrams, limits,
exponents, subobjects




'

&

$

%

categories, functors,
natural transformations,
. . .

institutions, semiotics,
. . .

|(#n+2).rel:restriction| ∈ rel(Setn+3)
|(#n+1).set:set| ∈ obj(Setn+2)
|#n.ftn:source| ∈ mor(Setn+1)

|f| ∈ mor(Setn)

((#n+1).set:set #n.set:set)
((#n+2):subset #n.set:set (#n+1).set:set)
(not (#n.set:set #n.set:set))

((#n+1).set:set #n.ftn:function)
((#n+2):subset #n.ftn:function (#n+1).ftn:function)

((#n+1).ftn:function #n.ftn:source)
(= ((#n+1).ftn:source #n.ftn:source) #n.ftn:function)
(= ((#n+1).ftn:target #n.ftn:source) #n.set:set)
((#n+2):restriction #n.ftn:source (#n+1).ftn:source)

((#n+1).ftn:function #n.ftn:target)
(= ((#n+1).ftn:source #n.ftn:target) #n.ftn:function)
(= ((#n+1).ftn:target #n.ftn:target) #n.set:set)
((#n+2):restriction #n.ftn:target (#n+1).ftn:target)

(#n.set:set A)
(#n.set:set B)
(#n.ftn:function f)
(= (#n.ftn:source f) A)
(= (#n.ftn:target f) B)

kind

type

meta �
�
�
�

A
A

A
A

n+3

n+2

n+1

n

· · ·

1

� �
kernel� �
core
� �
periphery

structural component

applied aspect

��
@@

metashell

natural
part

�
�

�

�
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· · · ⊆ setn ⊆ setn+1 ⊆ · · · ⊆ setmeta ⊆ settype ⊆ setiff

· · · ⊆ ftnn ⊆ ftnn+1 ⊆ · · · ⊆ ftnmeta ⊆ ftntype ⊆ ftniff

· · · ⊆ predn ⊆ predn+1 ⊆ · · · ⊆ predmeta ⊆ predtype ⊆ prediff

· · · ⊆ reln ⊆ reln+1 ⊆ · · · ⊆ relmeta ⊆ reltype ⊆ reliff
· · · ⊆ endon ⊆ endon+1 ⊆ · · · ⊆ endometa ⊆ endotype ⊆ endoiff

Subset

· · · v ∂n
0 v ∂n+1

0 v · · · v ∂meta
0 v ∂type

0 v ∂ iff
0

· · · v ∂n
1 v ∂n+1

1 v · · · v ∂meta
1 v ∂type

1 v ∂ iff
1

· · · v δn v δn+1 v · · · v δmeta v δtype v δiff

· · · v εn v εn+1 v · · · v εmeta v εtype v εiff

· · · v σn
0 v σn+1

0 v · · · v σmeta
0 v σtype

0 v σiff
0

· · · v σn
1 v σn+1

1 v · · · v σmeta
1 v σtype

1 v σiff
1

· · · v̇ (∂n
i=0,1) v̇ (∂n+1

i=0,1 ) v̇ · · · v̇ (∂meta
i=0,1) v̇ (∂type

i=0,1) v̇ (∂ iff
i=0,1)

· · · v̇ γn v̇ γn+1 v̇ · · · v̇ γmeta v̇ γtype v̇ γiff

· · · v̇ (σn
i=0,1) v̇ (σn+1

i=0,1 ) v̇ · · · v̇ (σmeta
i=0,1) v̇ (σtype

i=0,1) v̇ (σiff
i=0,1)

(Optimal-)Restriction

· · · � ⊆n � ⊆n+1 � · · · � ⊆meta � ⊆type � ⊆iff

· · · � ≤n � ≤n+1 � · · · � ≤meta � ≤type � ≤iff

· · · � vn � vn+1 � · · · � vmeta � vtype � viff

· · · � �n � �n+1 � · · · � �meta � �type � �iff

Abridgment

Table 2: Kernel Chains

2.5 Metastack

■

function
∂i : source/target

(∂i) : their pairing

predicate
γ : genus
δ : differentia

relation
σi : component sets

(σi) : their pairing
ε : extent

⊆ : subset

≤ : delimitation (pred)

v : restriction (ftn)

� : abridgment (rel)

just as (binary) relations are predicates
(unary relations or parts) on a binary
product and predicates are special func-
tions (injections), so also abridgment is a
special case of delimitation and delimita-
ton is a special case of optimal-restriction

The metastack is the kernel of the core component
setn ⊆ setn+1

ftnn ⊆ ftnn+1

∂n
0 ∂n

1 ∂n+1
0 ∂n+1

1
66 66

setn, ftnn ∈ setn+1

∂n
0 , ∂

n
1 , ◦n, 1n ∈ ftnn+1

➤ represents the Cantorian Expansion

➤ lattice-like structure (Figure 2):
subset, restriction, delimitation and abridgment chains

➤ binds/anchors natural part,
connects natural part to metashell
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Math IFF

names

a o.i:a
inner context i
outer context o

atoms and terms

set element x <−X or X(x) (X x)

predicate member x ∈ b or b(x) (b x)

relation member (x, y) ∈ r or r(x, y) (r x y)

function application f(x) (f x)

equations
σ = τ or =(σ, τ) (= s t)

connectives
and φ ∧ ψ or ∧(φ, ψ) (and P Q)

not ¬φ or ¬(φ) (not P)

quantifiers
universal ∀x0∈X0,x1∈X1φ

or ∀(x0∈X0,x1∈X1)(φ) (forall (x0 (X0 x0) x1 (X1 x1)) P)

Table 3: Syntax Tutorial

2.6 IFF Syntax

■ The LISt Processing (LISP) programming language is the second oldest
(1958). All program code is written as parenthesized lists.

■ The Knowledge Interchange Format (KIF), which has a LISP-like for-
mat, was created to serve as a syntax for first-order logic.

■ The IFF logical notation, which is a vastly simplified and modified
version of KIF, also has a LISP-like format.

■ The IFF grammar is located at http://suo.ieee.org/IFF/grammar.pdf.

➤ Written in Extended Backus Naur Form (EBNF), a convenient
way to describe the grammar of a language.

➤ Features of the IFF language:

✦ contains both logical IFF code and comments

✦ nested namespace assumptions

✦ levels specified by prefixes
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3 Foundations

“All of the substance of mathematics can be fully expressed in categories.”
∼ Bill Lawvere

3.1 Two Misconceptions

Myth: “Category theory is the ‘insubstantial part’ of mathematics and it
heralds an era when precise axioms are no longer needed.”12

Myth: “There are ‘size problems’ if one tries to do category theory in a way
harmonious with the standard practice of professional set theorists.”

▼ “The first of these misunderstandings is connected with taking seriously
the jest ‘sets without elements’. The traditions of algebraic geometry
and of category theory are completely compatible about elements.”

▲ The following transparencies address this issue.

☞ Inclusion and Membership

☞ Analogs

▼ “Contrary to Fregean rigidity, in mathematics we never use ‘properties’
that are defined on the universe of ‘everything’. There is the ‘universe
of discourse’ principle which is very important: for example, any given
group, (or any given topological space, etc.) acts as a universe of
discourse.”

▲ The IFF syntax addresses this issue. It requires the use of restricted
quantification in logical expression. For example, the following IFF
code axiomatizes the inverse element for a group:

(forall (?G (group ?G))

(forall (?a (?G ?a))

(and (= ((multiplication ?G) [?a ((inverse ?G) ?a)]) (unit ?G))

(= ((multiplication ?G) [((inverse ?G) ?a) ?a]) (unit ?G)))))

▲ The following transparencies address the second misunderstanding.

☞ Cantor

☞ Unions and Universes

12Taken from Bill Lawvere’s 3 messages to the CAT list: Why are we concerned?
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3.2 Cantor

From the book Sets for Mathematics by Bill Lawvere and Robert Rosebrugh.

Definition 1 Let Y be any set. An element y ∈ Y is a fixed point of an
endofunction τ : Y → Y when τ(y) = y. A set Y has the fixed point property
when every endofunction on Y has at least one fixed point.

Theorem 1 Suppose there is a set X and a function ϕ : X×X → Y whose
curry ϕ̂ : X → Y X , where ϕ̂(a) = ϕ(a, -) for all a ∈ X, is surjective; that is,
such that for every function f : X → Y there is at least one element a ∈ X
such that f = ϕ̂(a) = ϕ(a, -). Then Y has the fixed point property.

Corollary 1 (Cantor) If a set Y has at least one endofunction τ : Y → Y
with no fixed points, then for every set X there is no surjection X → Y X .

Corollary 2 For any set X,

X < 2X = ℘X.

Corollary 3 There cannot exist a “universal set” U for which every set X
is a subset X ⊆ U .

Proof: If so, then the inclusion X → U is an injection. Hence, the exponent
map 2U → 2X is a surjection. Define X = 2U to get a contradiction.

Corollary 4 The collection set of all sets is not a set.

Proof: If set were a set, then U =
⋃

set would be a “universal set”.
Comment The sets here are called “small” sets. The collection of small sets,
like the set of natural numbers ℵ, is either defined naturally, by convention or
logically/mathematically13. This corollary states that there are sets that are
not small. Change the notation, letting set1 denote the collection of small
sets, and set2 denote the collection of sets either small or not (call them
“large” sets). So that set1 ⊆ set2, set1 ∈ set2, but set1 6∈ set1.

Corollary 5 (Cantorian Expansion) The collection of all sets unfolds into
a chain (of Cantorian featureless abstract sets)

set = 〈set1 ⊂ set2 ⊂ · · · ⊂ setn ⊂ · · · ⊂ set∞〉

where set1 denotes the collection of all “small” sets.

Proof: Starting from the small sets set1, apply Corollary 4 repeatedly.

13The set of natural numbers, which occurs in nature, was used in antiquity (convention)
and axiomatized in modern times (logic/math).
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Figure 5: Local and Bounded Unions

3.3 Unions and Universes

■ Let n be any metalevel and let setn be the collection of all level n sets14.

➤ For any level n set X ∈ setn, the bounded union operation15

⋃X
n : ℘℘X → ℘X

is defined as
⋃X

n (X ) = {x ∈ X | ∃Y (x ∈ Y ∈ X )} for X ∈ ℘℘X.
Define ℘̃(setn) = setn∩℘setn ∈ setn+1. Then, ℘℘X ⊆ ℘̃(setn).

➤ A level n universe is a level n+1 set U ∈ setn+1 that has the prop-
erties: setn ⊆ U “every level n set is an element of the universe”
and setn ⊆ ℘U “every level n set is a subset of the universe”.
Then, ℘̃(setn) ⊆ ℘℘U .

➤ The local union operation16

⊔
n : ℘̃(setn) → setn

is defined as
⊔

n(X ) = {x | ∃Y (x ∈ Y ∈ X )}17 X ∈ ℘̃(setn).
Letting X = setn, define univn =

⊔
n+1 setn = {x | ∃Y (x ∈ Y ∈

setn)} ∈ setn+1. This is a specific level n universe.

local unions define bounded unions: (left side Figure 5)

bounded unions define local unions: (right side Figure 5)

14We assume that setn is closed under subset order (X ∈ setn, Y ⊆ X implies Y ∈ setn),
any level n set is a level n+1 set (setn ⊆ setn+1), setn is itself a level n+1 set (setn ∈ setn+1)
and setn is not a level n set (setn 6∈ setn).

15In the current version of the IFF, although we have bounded unions at every metalevel,
except for Cantor we have not used either local (unbounded) unions or universes.

16In the IFF, this union would be specified within and “local” to a particular IFF
metalevel.

17Following Mac Lane in the foundations section of CWM ([2]).
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Grothendieck universe IFF

Axioms: If X ∈ U and x ∈ X, then x ∈ U . If X ∈ setn and x ∈ X, then x ∈ univn.
If x, y ∈ U , then {x, y} ∈ U . doubleton function {-, -}X : X2 → ℘(X)
If X ∈ U , then ℘(X) ∈ U . power set function ℘ : setn → setn
If I ∈ U and Xα ∈ U for each α ∈ I, then⋃

α∈I Xα ∈ U .
bounded union

⋃X
n : ℘℘X → ℘X, and

local union
⊔

n : ℘̃(setn) → setn

Theorems: If X ∈ U and Y ⊆ X, then Y ∈ U . If X ∈ setn and Y ⊆ X, then Y ∈ setn.
If X,Y ∈ U , then (f : X → Y ) ∈ U . If X,Y ∈ setn, then (f : X → Y ) ∈ ftnn.
If X ∈ U and Y ∼= X, then Y ∈ U . If X ∈ setn and Y ∼= X, then Y ∈ setn.
If x ∈ U , then {x} ∈ U . singleton function {-}X : X → ℘(X)
If I ∈ U and Xα ∈ U for each α ∈ I, then∐

α∈I Xα,
∏

α∈I Xα,
⋂

α∈I Xα ∈ U .
The category setn is small (co)complete.
The preorder ℘(X) is a Boolean algebra.

Table 4: Grothendieck-IFF Analogs

Grothendieck Universes. The IFF has much in common with Grothendieck
universes. A Grothendieck universe U is meant to provide a set in which
all of mathematics can be performed18. The IFF provides a framework in
which all of mathematics can be axiomatized. Grothendieck universes model
universes of sets. However, IFF universes contain non-set objects such as
functions, predicates, relations, vectors, numbers, ships, stars, pelicans and
bacteria. This means that Grothendieck universes are more like the toposes
〈Setn, 1 ≤ n < ∞〉 than the IFF universes 〈univn, 1 ≤ n < ∞〉. Indeed, the
main intuition is that for any set X, there is a Grothendieck universe U with
X ∈ U . Similarly, for any IFF set X, there is a whole number 1 ≤ n < ∞
with X ∈ setn = obj(Setn). More precisely, a Grothendieck universe U is
a set which is closed under membership, and contains doubletons, powers
and indexed unions. These axioms imply that a Grothendieck universe U is
closed under the subset order, and contains functions, isomorphs, singletons,
indexed coproducts (disjoint unions), indexed products and indexed inter-
sections. Analogs between Grothendieck universes and the IFF are listed in
Table 4.

18(by way of Wikipedia) Bourbaki, N., Univers, appendix to Expos I of Artin, M.,
Grothendieck, A., Verdier, J. L., eds., Théorie des Topos et Cohomologie Étale des Schémas
(SGA 4), second edition, Springer-Verlag, Heidelberg, 1972.
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3.4 Inclusion/Membership

■ Let C be any category19 with X ∈ obj(C) be any C-object. For any
morphism x ∈ mor(C), x is an element of X, x <−X, when X = ∂C1 (x).

X
x-

element x <−X
part b : X

belongs x v y

inclusion a ⊆ b

member x ∈ b

Let ΞC(X) = obj(C↓X) denote the set of elements of X. For any X-
element b ∈ ΞC(X), b is a part of X20, b : X, when b is a monomorphism.

Xb-��
Let ℘C(X) = predC(X) ⊆ ΞC(X) denote the set of parts of X.

➤ For any two X-elements x, y ∈ ΞC(X), x belongs to y, x v y, when
there exists a proof morphism p ∈ mor(C) such that x = p · y21.

X

x y

p-

A
AU

�
��

slice category
C↓X

When y is an X-part, the proof p of that belonging is unique.

➤ For any two X-parts a, b ∈ ℘C(X), a is included in b, a ⊆ b, when
a belongs to b.

X

a b

�� -
A
AU

�
��

subobject preorder
℘C(X) = 〈℘C(X),≤C

X〉

➤ For any X-element x ∈ ΞC(X) and any X-part b ∈ predC(X), x is
a member of b, x ∈ b, when x belongs to b.

X

x b

-

A
AU

�
��

distributor
C↓X

∈C
X⇁ ℘C(X)

Fact 2 Inclusion equivalent to universal implication of membership

a ⊆ b iff ∀x<−X(x ∈ a ⇒ x ∈ b) ⊆ = ∈ \ ∈

19The material here is adapted from Bill Lawvere’s emails Why are we concerned?.
20In the IFF, b is called a predicate with genus X = γC(b) and differentia δC(b).
21Here, composition is written in diagrammatic order.
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3.5 The IFF Namespace

■ The terminology of the IFF namespace, a tiny namespace (only 21
terms) at the very top of the IFF architecture, is listed in the right side
of Figure 6.

➤ IFF things fall into four basic pairwise disjoint collections (left
side of Figure 6): sets, functions, predicates and relations.

➤ Some of the components of these four basic collections are also
introduced here: predicate genus, function source/target and re-
lation domain/codomain.

➤ The subset, delimitation, restriction, optimal-restriction and abridg-
ment endorelations are important for building the vertical aspect
of the metastack structural framework.

➤ The IFF namespace is closely related to the IFF grammar. The
IFF grammar can be used for type correctness in set membership,
function application, and predicate/relation invocation:

Here is a fragment of code22 from the function namespace in the kind
metalevel that defines the belonging relation for the category Setkind.

(iff.rel:endorelation belongs)
(= (iff.rel:base belongs) function)
(forall (?x (function ?x) ?y (function ?y))

(<=> (belongs ?x ?y)
(and (= (target ?x) (target ?y))

(exists (?p (function ?p))
(= ?x (composition [?p ?y]))))))

22Unqualified names are qualified by ‘kind.ftn’ via the nested namespace mechanism.
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3.6 Analogs

■ ordinary (global) elements (defined in grammar and iff namespace)

notation IFF

set X (set X)

function x : Z → X (function x)

(= (source x) Z)

(= (target x) X)

element x ∈ X (X x)

part b : X (predicate b)

(= (genus b) X)

belongs x v y

inclusion a ⊆ b

member
x ∈ b

(x, y) ∈ r
(b x)

(r x y)

application f(x) (f x)

■ generalized elements (morphisms) (defined in kind namespace)

notation IFF

set X (set X)

function x : Z → X (function x)

(= (source x) Z)

(= (target x) X)

element x <−X (= (target x) X)

part b : X (part b)

(= (genus b) X)

belongs x v y (belongs x y)

(belonging [x y])

inclusion a ⊆ b (included-in a b)

(inclusion [a b])

member x ∈ b (member x b)

(membership [x b])

composition x · f (composition [x f])
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4 Concluding Remarks

4.1 Future Work

■ The IFF

➤ Finish the concurrent development processes

✦ expression: natural language ⇒ first order ⇒ atomic

✦ category: finitely complete ⇒ cartesian-closed ⇒ topos

✦ elements: ordinary ⇒ generalized (morphisms)

➤ Continue work on axiomatizations in the structural component.

■ The Category Theory Community

➤ All scientific communities, indeed all communities of discourse
(disciplines), create their own conceptual structures with accom-
panying terminology and meaning (ontologies). Many communi-
ties are now working to standardize their ontologies.

➤ There is also a search for a unifying framework for these endeavers.
It has been suggested that category theory can serve this role
— category theory can serve as a meta-ontology, an ontology of
ontologies.

➤ Proposal: The category theory community will form a working
group (under the auspices of some organization or consortium) for
the purpose of developing a standard ontology for category theory.
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4.2 Standards

■ Why standards?

➤ Standards allow interoperability between cooperating groups in
technology, business and science. Standards are intended to be
documented, known descriptions of how something works so that
every group who adheres to the standard can interoperate. There
is no one true standard — the evolution of standards is a sign of
healthy innovation.

➤ The plurality of standards-issuing organizations means that some
standards do not necessarily have the support of all communities23

The standards of large communities can be created to replace the
various incompatible standards of smaller communities or can be
built from scratch by groups of experts.

■ What types of standards exist?

➤ open standard documented for all; developed and maintained
by peers and in public

➤ proprietary standard developed and maintained by/for one par-
ticular organisation (Microsoft’s Windows, Adobe’s PDF)

➤ ad hoc standard more widely used than their originator intended
(JVC’s VHS, Compuserve’s GIF)

➤ de facto standard the property of consortia that represent a
wide range of interests (IETF’s HTTP protocol, W3C’s HTML
format, OMG’s CORBA)

➤ de jure standard developed by standards bodies established un-
der national or international laws; (the meter of the French Acad-
emy of Sciences24 and the Geneva Conference on Weights and
Measures25, ANSI’s C programming language, ISO’s JPEG)

23“The nice thing about standards is that there are so many to choose from.” ∼ Tanen-
baum

24one/ten-millionth of the distance from the equator to the north pole
25the distance light travels in a vacuum in 1/299,792,458 seconds
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Principles
• due process
• openness
• consensus
• balance
• right of appeal

Process
0. idea
1. project approval by standards body
2. draft development by working group

a. form WG with chair and technical editor
b. establish goals, deadlines and schedule
c. draft document
d. reviewed by technical editor

3. sponsor ballot
4. standards board approval process
5. publish standards
6. periodically reaffirm, revise or withdraw standard; goto 1.

Table 5: IEEE Standards

Our two standard references for the IFF are the books: Sets for Mathematics
(2003) by F. William Lawvere and Robert Rosebrugh [1] and Categories for
the Working Mathematician (1971) by Saunders Mac Lane [2].
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